Download Free An Introduction To Theoretical And Applied Colloid Chemistry The World Of Neglected Dimensions Classic Reprint Book in PDF and EPUB Free Download. You can read online An Introduction To Theoretical And Applied Colloid Chemistry The World Of Neglected Dimensions Classic Reprint and write the review.

This book provides an introduction to this exciting and relativelynew subject with chapters covering natural and synthetic polymers,colloids, surfactants and liquid crystals highlighting the many andvaried applications of these materials. Written by an expert in thefield, this book will be an essential reference for people workingin both industry and academia and will aid in understanding of thisincreasingly popular topic. Contains a new chapter on biological soft matter Newly edited and updated chapters including updated coverageof recent aspects of polymer science. Contain problems at the end of each chapter to facilitateunderstanding
Presented in an accessible and introductory manner, this is the first book devoted to the comprehensive study of colloidal suspensions.
The colloidal state; Kinetic properties; Optical properties; Liquid-gas and liquid- liquid interfaces; The solid-gas interface; Charged interfaces; Colloid stability; Rheology; Emulsions and foams.
"This book by Lisa Tauxe and others is a marvelous tool for education and research in Paleomagnetism. Many students in the U.S. and around the world will welcome this publication, which was previously only available via the Internet. Professor Tauxe has performed a service for teaching and research that is utterly unique."—Neil D. Opdyke, University of Florida
From the reviews of the First Edition: "The book has admirably met its stated goal. The whole gamut of surface and colloid science has been presented in a comprehensive manner without any undue oversimplification. The author should be congratulated for his clarity." -Advanced Materials Now in its second edition, this work remains the single most useful introduction available to the complex area of surface and colloids science. Industry expert Drew Myers walks readers through concepts, theories, and applications-keeping the mathematics to a minimum and presenting real-world case studies to illustrate key technological and biological processes. He substantially reorganizes and updates the material to reflect the current state of knowledge in the field, offering new chapters on absorption and biological systems in addition to the important areas of colloid stability, emulsions and foams, monolayer films, surfactants, and wetting. This revision also boasts an improved index, more than 200 new line drawings, general and specific chapter bibliographies, and end-of-chapter problems. Geared to scientists, technologists, and students dealing with colloidal and surface systems and their numerous industrial applications, the book imparts an understanding of the fundamental aspects of surfaces, interfaces, and colloids, which is essential for effective solutions in diverse areas of chemistry, physics, biology, medicine, engineering, and material sciences.
Essential text on the practical application and theory of colloidal suspension rheology, written by an international coalition of experts.
A molecular view on the fundamental issues in polymer physics is provided with an aim at students in chemistry, chemical engineering, condensed matter physics and material science courses. An updated translation by the author, a renowned Chinese chemist, it has been proven to be an effective source of learning for many years. Up-to-date developments are reflected throughout the work in this concise presentation of the topic. The author aims at presenting the subject in an efficient manner, which makes this particularly suitable for teaching polymer physics in settings where time is limited, without having to sacrifice the extensive scope that this topic demands.
This book provides a concise and inexpensive introduction for an undergraduate course in glass science and technology. The level of the book has deliberately been maintained at the introductory level to avoid confusion of the student by inclusion of more advanced material, and is unique in that its text is limited to the amount suitable for a one term course for students in materials science, ceramics or inorganic chemistry. The contents cover the fundamental topics of importance in glass science and technology, including glass formation, crystallization, phase separation and structure of glasses. Additional chapters discuss the most important properties of glasses, including discussion of physical, optical, electrical, chemical and mechanical properties. A final chapter provides an introduction to a number of methods used to form technical glasses, including glass sheet, bottles, insulation fibre, optical fibres and other common commercial products. In addition, the book contains discussion of the effects of phase separation and crystallization on the properties of glasses, which is neglected in other texts. Although intended primarily as a textbook, Introduction to Glass Science and Technology will also be invaluable to the engineer or scientist who desires more knowledge regarding the formation, properties and production of glass.
?? Giant molecules are important in our everyday life. But, as pointed out by the authors, they are also associated with a culture. What Bach did with the harpsichord, Kuhn and Flory did with polymers. We owe a lot of thanks to those who now make this music accessible ??Pierre-Gilles de GennesNobel Prize laureate in Physics(Foreword for the 1st Edition, March 1996)This book describes the basic facts, concepts and ideas of polymer physics in simple, yet scientifically accurate, terms. In both scientific and historic contexts, the book shows how the subject of polymers is fascinating, as it is behind most of the wonders of living cell machinery as well as most of the newly developed materials. No mathematics is used in the book beyond modest high school algebra and a bit of freshman calculus, yet very sophisticated concepts are introduced and explained, ranging from scaling and reptations to protein folding and evolution. The new edition includes an extended section on polymer preparation methods, discusses knots formed by molecular filaments, and presents new and updated materials on such contemporary topics as single molecule experiments with DNA or polymer properties of proteins and their roles in biological evolution.