Download Free An Introduction To Steins Method Book in PDF and EPUB Free Download. You can read online An Introduction To Steins Method and write the review.

A common theme in probability theory is the approximation of complicated probability distributions by simpler ones, the central limit theorem being a classical example. Stein's method is a tool which makes this possible in a wide variety of situations. Traditional approaches, for example using Fourier analysis, become awkward to carry through in situations in which dependence plays an important part, whereas Stein's method can often still be applied to great effect. In addition, the method delivers estimates for the error in the approximation, and not just a proof of convergence. Nor is there in principle any restriction on the distribution to be approximated; it can equally well be normal, or Poisson, or that of the whole path of a random process, though the techniques have so far been worked out in much more detail for the classical approximation theorems.This volume of lecture notes provides a detailed introduction to the theory and application of Stein's method, in a form suitable for graduate students who want to acquaint themselves with the method. It includes chapters treating normal, Poisson and compound Poisson approximation, approximation by Poisson processes, and approximation by an arbitrary distribution, written by experts in the different fields. The lectures take the reader from the very basics of Stein's method to the limits of current knowledge.
Since its introduction in 1972, Stein’s method has offered a completely novel way of evaluating the quality of normal approximations. Through its characterizing equation approach, it is able to provide approximation error bounds in a wide variety of situations, even in the presence of complicated dependence. Use of the method thus opens the door to the analysis of random phenomena arising in areas including statistics, physics, and molecular biology. Though Stein's method for normal approximation is now mature, the literature has so far lacked a complete self contained treatment. This volume contains thorough coverage of the method’s fundamentals, includes a large number of recent developments in both theory and applications, and will help accelerate the appreciation, understanding, and use of Stein's method by providing the reader with the tools needed to apply it in new situations. It addresses researchers as well as graduate students in Probability, Statistics and Combinatorics.
A common theme in probability theory is the approximation of complicated probability distributions by simpler ones, the central limit theorem being a classical example. Stein's method is a tool which makes this possible in a wide variety of situations. Traditional approaches, for example using Fourier analysis, become awkward to carry through in situations in which dependence plays an important part, whereas Stein's method can often still be applied to great effect. In addition, the method delivers estimates for the error in the approximation, and not just a proof of convergence. Nor is there in principle any restriction on the distribution to be approximated; it can equally well be normal, or Poisson, or that of the whole path of a random process, though the techniques have so far been worked out in much more detail for the classical approximation theorems.This volume of lecture notes provides a detailed introduction to the theory and application of Stein's method, in a form suitable for graduate students who want to acquaint themselves with the method. It includes chapters treating normal, Poisson and compound Poisson approximation, approximation by Poisson processes, and approximation by an arbitrary distribution, written by experts in the different fields. The lectures take the reader from the very basics of Stein's method to the limits of current knowledge.
Stein's startling technique for deriving probability approximations first appeared about 30 years ago. Since then, much has been done to refine and develop the method, but it is still a highly active field of research, with many outstanding problems, both theoretical and in applications. This volume, the proceedings of a workshop held in honour of Charles Stein in Singapore, August 1983, contains contributions from many of the mathematicians at the forefront of this effort. It provides a cross-section of the work currently being undertaken, with many pointers to future directions. The papers in the collection include applications to the study of random binary search trees, Brownian motion on manifolds, Monte-Carlo integration, Edgeworth expansions, regenerative phenomena, the geometry of random point sets, and random matrices.
This book focuses on quantitative approximation results for weak limit theorems when the target limiting law is infinitely divisible with finite first moment. Two methods are presented and developed to obtain such quantitative results. At the root of these methods stands a Stein characterizing identity discussed in the third chapter and obtained thanks to a covariance representation of infinitely divisible distributions. The first method is based on characteristic functions and Stein type identities when the involved sequence of random variables is itself infinitely divisible with finite first moment. In particular, based on this technique, quantitative versions of compound Poisson approximation of infinitely divisible distributions are presented. The second method is a general Stein's method approach for univariate selfdecomposable laws with finite first moment. Chapter 6 is concerned with applications and provides general upper bounds to quantify the rate of convergence in classical weak limit theorems for sums of independent random variables. This book is aimed at graduate students and researchers working in probability theory and mathematical statistics.
This book shows how quantitative central limit theorems can be deduced by combining two powerful probabilistic techniques: Stein's method and Malliavin calculus.
The Poisson "law of small numbers" is a central principle in modern theories of reliability, insurance, and the statistics of extremes. It also has ramifications in apparently unrelated areas, such as the description of algebraic and combinatorial structures, and the distribution of prime numbers. Yet despite its importance, the law of small numbers is only an approximation. In 1975, however, a new technique was introduced, the Stein-Chen method, which makes it possible to estimate the accuracy of the approximation in a wide range of situations. This book provides an introduction to the method, and a varied selection of examples of its application, emphasizing the flexibility of the technique when combined with a judicious choice of coupling. It also contains more advanced material, in particular on compound Poisson and Poisson process approximation, where the reader is brought to the boundaries of current knowledge. The study will be of special interest to postgraduate students and researchers in applied probability as well as computer scientists.
With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.