Download Free An Introduction To Plasma Astrophysics And Magnetohydrodynamics Book in PDF and EPUB Free Download. You can read online An Introduction To Plasma Astrophysics And Magnetohydrodynamics and write the review.

Most of the visible matter in the universe exists in the plasma state. Plasmas are of major importance for space physics, solar physics, and astrophysics. On Earth they are essential for magnetic controlled thermonuclear fusion. This textbook collects lecture notes from a one-semester course taught at the K.U. Leuven to advanced undergraduate students in applied mathematics and physics. A particular strength of this book is that it provides a low threshold introduction to plasmas with an emphasis on first principles and fundamental concepts and properties. The discussion of plasma models is to a large extent limited to Magnetohydrodynamics (MHD) with its merits and limitations clearly explained. MHD provides the students on their first encounter with plasmas, with a powerful plasma model that they can link to familiar classic fluid dynamics. The solar wind is studied as an example of hydrodynamics and MHD at work in solar physics and astrophysics.
Most of the visible matter in the universe exists in the plasma state. Plasmas are of major importance for space physics, solar physics, and astrophysics. On Earth they are essential for magnetic controlled thermonuclear fusion. This textbook collects lecture notes from a one-semester course taught at the K.U. Leuven to advanced undergraduate students in applied mathematics and physics. A particular strength of this book is that it provides a low threshold introduction to plasmas with an emphasis on first principles and fundamental concepts and properties. The discussion of plasma models is to a large extent limited to Magnetohydrodynamics (MHD) with its merits and limitations clearly explained. MHD provides the students on their first encounter with plasmas, with a powerful plasma model that they can link to familiar classic fluid dynamics. The solar wind is studied as an example of hydrodynamics and MHD at work in solar physics and astrophysics.
An introduction to magnetohydrodynamics combining theory with advanced topics including the applications of plasma physics to thermonuclear fusion and plasma astrophysics.
This textbook provides a modern and accessible introduction to magnetohydrodynamics (MHD). It describes the two main applications of plasma physics, laboratory research on thermo-nuclear fusion energy and plasma astrophysics of the solar system, stars and accretion disks, from the single viewpoint of MHD. This approach provides effective methods and insights for the interpretation of plasma phenomena on virtually all scales, from the laboratory to the universe. It equips the reader with the necessary tools to understand the complexities of plasma dynamics in extended magnetic structures. The classical MHD model is developed in detail without omitting steps in the derivations and problems are included at the end of each chapter. This text is ideal for senior-level undergraduate and graduate courses in plasma physics and astrophysics.
Following on from the companion volume Principles of Magnetohydrodynamics, this textbook analyzes the applications of plasma physics to thermonuclear fusion and plasma astrophysics from the single viewpoint of MHD. This approach turns out to be ever more powerful when applied to streaming plasmas (the vast majority of visible matter in the Universe), toroidal plasmas (the most promising approach to fusion energy), and nonlinear dynamics (where it all comes together with modern computational techniques and extreme transonic and relativistic plasma flows). The textbook interweaves theory and explicit calculations of waves and instabilities of streaming plasmas in complex magnetic geometries. It is ideally suited to advanced undergraduate and graduate courses in plasma physics and astrophysics.
This book is an introduction to contemporary plasma physics that discusses the most relevant recent advances in the field and covers a careful choice of applications to various branches of astrophysics and space science. The purpose of the book is to allow the student to master the basic concepts of plasma physics and to bring him or her up to date in a number of relevant areas of current research. Topics covered include orbit theory, kinetic theory, fluid models, magnetohydrodynamics, MHD turbulence, instabilities, discontinuities, and magnetic reconnection. Some prior knowledge of classical physics is required, in particular fluid mechanics, statistical physics, and electrodynamics. The mathematical developments are self-contained and explicitly detailed in the text. A number of exercises are provided at the end of each chapter, together with suggestions and solutions.
Plasma Physics presents an authoritative and wide-ranging pedagogic study of the 'fourth' state of matter. The constituents of the plasma state are influenced by electric and magnetic fields, and in turn also produce electric and magnetic fields. This fact leads to a rich array of properties of the plasma state. A basic knowledge of mathematics and physics is preferable to appreciate fully this text. The author uses examples throughout, many taken from astrophysical phenomena, to explain concepts. In addition, problem sets at the end of each chapter will serve to reinforce key points.
Advanced undergraduate/beginning graduate text on space and laboratory plasma physics.
Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book is ideal as an advanced undergraduate to graduate-level textbook, or as a reference for researchers.