Download Free An Introduction To Fuzzy Set Theory And Fuzzy Logic Book in PDF and EPUB Free Download. You can read online An Introduction To Fuzzy Set Theory And Fuzzy Logic and write the review.

This book is an excellent starting point for any curriculum in fuzzy systems fields such as computer science, mathematics, business/economics and engineering. It covers the basics leading to: fuzzy clustering, fuzzy pattern recognition, fuzzy database, fuzzy image processing, soft computing, fuzzy applications in operations research, fuzzy decision making, fuzzy rule based systems, fuzzy systems modeling, fuzzy mathematics. It is not a book designed for researchers - it is where you really learn the "basics" needed for any of the above-mentioned applications. It includes many figures and problem sets at the end of sections.
Presents the rudiments of fuzzy set theory and fuzzy logic and related topics and their applications in a simple and easy-to-understand manner. The book avoids the extremes of abstract mathematical proofs as well as specialized technical details of different areas of application.
In the early 1970s, fuzzy systems and fuzzy control theories added a new dimension to control systems engineering. From its beginnings as mostly heuristic and somewhat ad hoc, more recent and rigorous approaches to fuzzy control theory have helped make it an integral part of modern control theory and produced many exciting results. Yesterday's "art
This book consists of selected papers written by the founder of fuzzy set theory, Lotfi A Zadeh. Since Zadeh is not only the founder of this field, but has also been the principal contributor to its development over the last 30 years, the papers contain virtually all the major ideas in fuzzy set theory, fuzzy logic, and fuzzy systems in their historical context. Many of the ideas presented in the papers are still open to further development. The book is thus an important resource for anyone interested in the areas of fuzzy set theory, fuzzy logic, and fuzzy systems, as well as their applications. Moreover, the book is also intended to play a useful role in higher education, as a rich source of supplementary reading in relevant courses and seminars.The book contains a bibliography of all papers published by Zadeh in the period 1949-1995. It also contains an introduction that traces the development of Zadeh's ideas pertaining to fuzzy sets, fuzzy logic, and fuzzy systems via his papers. The ideas range from his 1965 seminal idea of the concept of a fuzzy set to ideas reflecting his current interest in computing with words — a computing in which linguistic expressions are used in place of numbers.Places in the papers, where each idea is presented can easily be found by the reader via the Subject Index.
Since its inception 20 years ago the theory of fuzzy sets has advanced in a variety of ways and in many disciplines. Applications of this theory can be found in artificial intelligence, computer science, control engineering, decision theory, expert systems, logic, management science, operations research, pattern recognition, robotics and others. Theoretical advances, too, have been made in many directions, and a gap has arisen between advanced theoretical topics and applications, which often use the theory at a rather elementary level. The primary goal of this book is to close this gap - to provide a textbook for courses in fuzzy set theory and a book that can be used as an introduction. This revised book updates the research agenda, with the chapters of possibility theory, fuzzy logic and approximate reasoning, expert systems and control, decision making and fuzzy set models in operations research being restructured and rewritten. Exercises have been added to almost all chapters and a teacher's manual is available upon request.
This book presents a mathematically-based introduction into the fascinating topic of Fuzzy Sets and Fuzzy Logic and might be used as textbook at both undergraduate and graduate levels and also as reference guide for mathematician, scientists or engineers who would like to get an insight into Fuzzy Logic. Fuzzy Sets have been introduced by Lotfi Zadeh in 1965 and since then, they have been used in many applications. As a consequence, there is a vast literature on the practical applications of fuzzy sets, while theory has a more modest coverage. The main purpose of the present book is to reduce this gap by providing a theoretical introduction into Fuzzy Sets based on Mathematical Analysis and Approximation Theory. Well-known applications, as for example fuzzy control, are also discussed in this book and placed on new ground, a theoretical foundation. Moreover, a few advanced chapters and several new results are included. These comprise, among others, a new systematic and constructive approach for fuzzy inference systems of Mamdani and Takagi-Sugeno types, that investigates their approximation capability by providing new error estimates.
Reflecting the tremendous advances that have taken place in the study of fuzzy set theory and fuzzy logic, this book not only details the theoretical advances in these areas, but also considers a broad variety of applications of fuzzy sets and fuzzy logic. This comprehensive and up-to-date text is organized in three parts. The concepts pertaining to the “crisp” situation such as Set Theory, Logic, Switching Function Theory and Boolean Algebra are covered in Part I of the text. Part II is devoted to fuzzy Set Theory, Fuzzy Relations and Fuzzy Logic. The applications of fuzzy set theory and fuzzy logic to Control Theory and Decision Making are designated Part III of the text. Designed as a textbook for the undergraduate and postgraduate students of Science and Engineering, the book will also be immensely useful to practicing engineers and computer scientists.
A self-contained treatment of fuzzy systems engineering, offering conceptual fundamentals, design methodologies, development guidelines, and carefully selected illustrative material Forty years have passed since the birth of fuzzy sets, in which time a wealth of theoretical developments, conceptual pursuits, algorithmic environments, and other applications have emerged. Now, this reader-friendly book presents an up-to-date approach to fuzzy systems engineering, covering concepts, design methodologies, and algorithms coupled with interpretation, analysis, and underlying engineering knowledge. The result is a holistic view of fuzzy sets as a fundamental component of computational intelligence and human-centric systems. Throughout the book, the authors emphasize the direct applicability and limitations of the concepts being discussed, and historical and bibliographical notes are included in each chapter to help readers view the developments of fuzzy sets from a broader perspective. A radical departure from current books on the subject, Fuzzy Systems Engineering presents fuzzy sets as an enabling technology whose impact, contributions, and methodology stretch far beyond any specific discipline, making it applicable to researchers and practitioners in engineering, computer science, business, medicine, bioinformatics, and computational biology. Additionally, three appendices and classroom-ready electronic resources make it an ideal textbook for advanced undergraduate- and graduate-level courses in engineering and science.
Generalized Measure Theory examines the relatively new mathematical area of generalized measure theory. The exposition unfolds systematically, beginning with preliminaries and new concepts, followed by a detailed treatment of important new results regarding various types of nonadditive measures and the associated integration theory. The latter involves several types of integrals: Sugeno integrals, Choquet integrals, pan-integrals, and lower and upper integrals. All of the topics are motivated by numerous examples, culminating in a final chapter on applications of generalized measure theory. Some key features of the book include: many exercises at the end of each chapter along with relevant historical and bibliographical notes, an extensive bibliography, and name and subject indices. The work is suitable for a classroom setting at the graduate level in courses or seminars in applied mathematics, computer science, engineering, and some areas of science. A sound background in mathematical analysis is required. Since the book contains many original results by the authors, it will also appeal to researchers working in the emerging area of generalized measure theory.