Download Free An Introduction To Chemical Thermodynami Book in PDF and EPUB Free Download. You can read online An Introduction To Chemical Thermodynami and write the review.

This course-derived undergraduate textbook provides a concise explanation of the key concepts and calculations of chemical thermodynamics. Instead of the usual ‘classical’ introduction, this text adopts a straightforward postulatory approach that introduces thermodynamic potentials such as entropy and energy more directly and transparently. Structured around several features to assist students’ understanding, Chemical Thermodynamics : Develops applications and methods for the ready treatment of equilibria on a sound quantitative basis. Requires minimal background in calculus to understand the text and presents formal derivations to the student in a detailed but understandable way. Offers end-of-chapter problems (and answers) for self-testing and review and reinforcement, of use for self- or group study. This book is suitable as essential reading for courses in a bachelor and master chemistry program and is also valuable as a reference or textbook for students of physics, biochemistry and materials science.
This book is a beginners introduction to chemical thermodynamics for engineers. In the textbook efforts have been made to visualize as clearly as possible the main concepts of thermodynamic quantities such as enthalpy and entropy, thus making them more perceivable. Furthermore, intricate formulae in thermodynamics have been discussed as functionally unified sets of formulae to understand their meaning rather than to mathematically derive them in detail.In this textbook, the affinity of irreversible processes, defined by the second law of thermodynamics, has been treated as the main subject, rather than the equilibrium of chemical reactions. The concept of affinity is applicable in general not only to the processes of chemical reactions but also to all kinds of irreversible processes.This textbook also includes electrochemical thermodynamics in which, instead of the classical phenomenological approach, molecular science provides an advanced understanding of the reactions of charged particles such as ions and electrons at the electrodes.Recently, engineering thermodynamics has introduced a new thermodynamic potential called exergy, which essentially is related to the concept of the affinity of irreversible processes. This textbook discusses the relation between exergy and affinity and explains the exergy balance diagram and exergy vector diagram applicable to exergy analyses in chemical manufacturing processes. This textbook is written in the hope that the readers understand in a broad way the fundamental concepts of energy and exergy from chemical thermodynamics in practical applications. Finishing this book, the readers may easily step forward further into an advanced text of their specified line.- Visualizes the main concepts of thermodynamics to show the meaning of the quantities and formulae.- Focuses mainly on the affinity of irreversible processes and the related concept of exergy.- Provides an advanced understanding of electrochemical thermodynamics.
• Calculations approach: Strong mathematical rigor has been applied, and a complementary physical treatment given, to make students strong in the applied aspects of thermodynamics • Problem solving presentation: 195 solved examples and 269 unsolved problems have been given. Hints to difficult problems have been give too. • Concept checking Review Questions have been given at the end of every chapter • Coverage on thermodynamic discussion of eutectics, solid solutions and phase separation
This textbook is a general introduction to chemical thermodynamics.
Fundamentals of Chemical Engineering Thermodynamics is the clearest and most well-organized introduction to thermodynamics theory and calculations for all chemical engineering undergraduates. This brand-new text makes thermodynamics far easier to teach and learn. Drawing on his award-winning courses at Penn State, Dr. Themis Matsoukas organizes the text for more effective learning, focuses on "why" as well as "how," offers imagery that helps students conceptualize the equations, and illuminates thermodynamics with relevant examples from within and beyond the chemical engineering discipline. Matsoukas presents solved problems in every chapter, ranging from basic calculations to realistic safety and environmental applications.
This book is an excellent companion to Chemical Thermodynamics: Principles and Applications. Together they make a complete reference set for the practicing scientist. This volume extends the range of topics and applications to ones that are not usually covered in a beginning thermodynamics text. In a sense, the book covers a "middle ground" between the basic principles developed in a beginning thermodynamics textbook, and the very specialized applications that are a part of an ongoing research project. As such, it could prove invaluable to the practicing scientist who needs to apply thermodynamic relationships to aid in the understanding of the chemical process under consideration. The writing style in this volume remains informal, but more technical than in Principles and Applications. It starts with Chapter 11, whichsummarizes the thermodynamic relationships developed in this earlier volume. For those who want or need more detail, references are given tothe sections in Principles and Applications where one could go to learn more about the development, limitations, and conditions where these equations apply. This is the only place where Advanced Applications ties back to the previous volume. Chapter 11 can serve as a review of the fundamental thermodynamic equations that are necessary for the more sophisticated applications described in the remainder of this book. This may be all that is necessary for the practicing scientist who has been away from the field for some time and needs some review. The remainder of this book applies thermodynamics to the description of a variety of problems. The topics covered are those that are probably of the most fundamental and broadest interest. Throughout the book, examples of "real" systems are used as much as possible. This is in contrast to many books where "generic" examples are used almost exclusively. A complete set of references to all sources of data and to supplementary reading sources is included. Problems are given at the end of each chapter. This makes the book ideally suited for use as a textbook in an advanced topics course in chemical thermodynamics. - An excellent review of thermodynamic principles and mathematical relationships along with references to the relevant sections in Principles and Applications where these equations are developed - Applications of thermodynamics in a wide variety of chemical processes, including phase equilibria, chemical equilibrium, properties of mixtures, and surface chemistry - Case-study approach to demonstrate the application of thermodynamics to biochemical, geochemical, and industrial processes - Applications at the "cutting edge" of thermodynamics - Examples and problems to assist in learning - Includes a complete set of references to all literature sources
A comprehensive introduction, examining both macroscopic and microscopic aspects of the subject, the book applies the theory of thermodynamics to a broad range of materials; from metals, ceramics and other inorganic materials to geological materials. Focusing on materials rather than the underlying mathematical concepts of the subject, this book will be ideal for the non-specialist requiring an introduction to the energetics and stability of materials. Macroscopic thermodynamic properties are linked to the underlying miscroscopic nature of the materials and trends in important properties are discussed. A unique approach covering both macroscopic and microscopic aspects of the subject Authors have worldwide reputations in this area Fills a gap in the market by featuring a wide range of real up-to-date examples and covering a large amount of materials
Chemical engineers face the challenge of learning the difficult concept and application of entropy and the 2nd Law of Thermodynamics. By following a visual approach and offering qualitative discussions of the role of molecular interactions, Koretsky helps them understand and visualize thermodynamics. Highlighted examples show how the material is applied in the real world. Expanded coverage includes biological content and examples, the Equation of State approach for both liquid and vapor phases in VLE, and the practical side of the 2nd Law. Engineers will then be able to use this resource as the basis for more advanced concepts.
This book, now in its second edition, continues to provide a comprehensive introduction to the principles of chemical engineering thermodynamics and also introduces the student to the application of principles to various practical areas. The book emphasizes the role of the fundamental principles of thermodynamics in the derivation of significant relationships between the various thermodynamic properties. The initial chapter provides an overview of the basic concepts and processes, and discusses the important units and dimensions involved. The ensuing chapters, in a logical presentation, thoroughly cover the first and second laws of thermodynamics, the heat effects, the thermodynamic properties and their relations, refrigeration and liquefaction processes, and the equilibria between phases and in chemical reactions. The book is suitably illustrated with a large number of visuals. In the second edition, new sections on Quasi-Static Process and Entropy Change in Reversible and Irreversible Processes are included. Besides, new Solved Model Question Paper and several new Multiple Choice Questions are also added that help develop the students’ ability and confidence in the application of the underlying concepts. Primarily intended for the undergraduate students of chemical engineering and other related engineering disciplines such as polymer, petroleum and pharmaceutical engineering, the book will also be useful for the postgraduate students of the subject as well as professionals in the relevant fields.