Download Free An Introduction To Alfven Waves Book in PDF and EPUB Free Download. You can read online An Introduction To Alfven Waves and write the review.

This valuable introduction to the physics of Alfven waves in laboratory and space plasmas is accessible to anyone with a elementary knowledge of plasma physics. The book will give graduate students all the background information necessary to understand the research literature. Much of the material is recent and may contain some surprises even for experts.
Low-frequency wave modes of magnetized inhomogeneous plasmas have been subject to intense study in the last decade because they play important roles in the transport of energy in the plasmas. The "Alfvén wave heating" scheme has been investigated as a supplementary heating scheme for fusion plasma devices, and it has been invoked as a model of the heating of the solar and stellar coronae. This book covers the latest research into the properties and applications of low-frequency wave modes in magnetized plasmas, the Alfvén waves and magneto-acoustic waves, in the context of laboratory, space and astrophysical plasmas. In particular, non-ideal effects on the dispersion relation and absorption properties of linear and non-linear waves are included, such as ion-cyclotron effects, friction between the ionized plasma and a background gas of neutral atoms, and the interaction of the plasma with dust particles. The book also surveys the theory of Alfvén and magnetoacoustic waves in inhomogeneous plasmas, as occur in realistic laboratory, space and astrophysical plasmas, with resulting localized wave modes such as surface waves. Waves are considered under a variety of plasma conditions, ranging from cold cosmic plasmas, to hot laboratory and solar plasmas, to the relativistic plasmas around pulsars.
This book presents the current theoretical state of knowledge of Alfven waves, the basic low frequency mode of transport of information and energy in magenetized plasmas. Links to experimental and observational evidence for the waves are given. The scope covers Alfven waves in laboratory, space and astrophysical plasmas, and emphasizes the effects of the realistic, non-ideal physics of such plasmas on the properties of the waves.
Suitable for researchers and graduate students in fluid dynamics, astrophysics, and other areas of physics, this book clearly elucidates the dynamics and behavior of waves and oscillations in various mediums. It presents different types of waves and oscillations that can be observed and studied from macroscopic to microscopic scales. The authors describe applications in astrophysics, include simple exercises to give readers a hands-on grasp of the basics, and provide a large list of bibliographic sources that enable readers to research more technical aspects.
This book provides a systematic introduction to the observation and application of kinetic Alfven waves (KAWs) in various plasma environments, with a special focus on the solar-terrestrial coupling system. Alfven waves are low-frequency and long-wavelength fluctuations that pervade laboratory, space and cosmic plasmas. KAWs are dispersive Alfven waves with a short wavelength comparable to particle kinematic scales and hence can play important roles in the energization and transport of plasma particles, the formation of fine magneto-plasma structures, and the dissipation of turbulent Alfven waves. Since the 1990s, experimental studies on KAWs in laboratory and space plasmas have significantly advanced our understanding of KAWs, making them an increasingly interesting subject. Without a doubt, the solar–terrestrial coupling system provides us with a unique natural laboratory for the comprehensive study of KAWs. This book presents extensive observations of KAWs in solar and heliospheric plasmas, as well as numerous applications of KAWs in the solar-terrestrial coupling system, including solar atmosphere heating, solarwind turbulence, solar wind-magnetosphere interactions, and magnetosphere-ionosphere coupling. In addition, for the sake of consistency, the book includes the basic theories and physical properties of KAWs, as well as their experimental demonstrations in laboratory plasmas. In closing, it discusses possible applications of KAWs to other astrophysical plasmas. Accordingly, the book covers all the major aspects of KAWs in a coherent manner that will appeal to advanced graduate students and researchers whose work involves laboratory, space and astrophysical plasmas.
Introduction to Plasma Physics is the standard text for an introductory lecture course on plasma physics. The text’s six sections lead readers systematically and comprehensively through the fundamentals of modern plasma physics. Sections on single-particle motion, plasmas as fluids, and collisional processes in plasmas lay the groundwork for a thorough understanding of the subject. The authors take care to place the material in its historical context for a rich understanding of the ideas presented. They also emphasize the importance of medical imaging in radiotherapy, providing a logical link to more advanced works in the area. The text includes problems, tables, and illustrations as well as a thorough index and a complete list of references.
Introducing the principles and applications of plasma physics, this new edition is ideal as an advanced undergraduate or graduate-level text.
The book deals with the propagation and absorption of high frequency waves in plasmas. The text collects in a structured and self-contained way the basic knowledge on the broad and varied behavior of plasma waves, adopting the microscopic kinetic description of the plasma as unifying principle. The internal coherence of the theory is explicitly stressed, and interesting physical phenomena peculiar to plasmas are discussed in detail, including collisionless damping of waves, the development of stochasticity in the interactions of charged particles with electromagnetic waves, and nonlinear interactions between waves. The most common and useful approximations used in solving practical problems are derived as special cases from the more general kinetic approach, thereby clarifying their meaning and domain of applicability. This exposition should be useful to plasma physicists both as an introduction and a reference to this field of research.