Download Free An Extended Technique For Order Preference By Similarity To An Ideal Solution Topsis With Maximizing Deviation Method Based On Integrated Weight Measure For Single Valued Neutrosophic Sets Book in PDF and EPUB Free Download. You can read online An Extended Technique For Order Preference By Similarity To An Ideal Solution Topsis With Maximizing Deviation Method Based On Integrated Weight Measure For Single Valued Neutrosophic Sets and write the review.

A single-valued neutrosophic set (SVNS) is a special case of a neutrosophic set which is characterized by a truth, indeterminacy, and falsity membership function, each of which lies in the standard interval of [0, 1].
Single-valued neutrosophic set (SVNS) is an important contrivance for directing the decision-making queries with unknown and indeterminant data by employing a degree of “acceptance”, “indeterminacy”, and “non-acceptance” in quantitative terms. Under this set, the objective of this paper is to propose some new distance measures to find discrimination between the SVNSs. The basic axioms of the measures have been highlighted and examined their properties. Furthermore, to examine the relevance of proposed measures, an extended TOPSIS (“technique for order preference by similarity to ideal solution”) method is introduced to solve the group decision-making problems. Additionally, a new clustering technique is proposed based on the stated measures to classify the objects. The advantages, comparative analysis as well as superiority analysis is given to shows its influence over existing approaches.
Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor . Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set. This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc.
This sixth volume of Collected Papers includes 74 papers comprising 974 pages on (theoretic and applied) neutrosophics, written between 2015-2021 by the author alone or in collaboration with the following 121 co-authors from 19 countries: Mohamed Abdel-Basset, Abdel Nasser H. Zaied, Abduallah Gamal, Amir Abdullah, Firoz Ahmad, Nadeem Ahmad, Ahmad Yusuf Adhami, Ahmed Aboelfetouh, Ahmed Mostafa Khalil, Shariful Alam, W. Alharbi, Ali Hassan, Mumtaz Ali, Amira S. Ashour, Asmaa Atef, Assia Bakali, Ayoub Bahnasse, A. A. Azzam, Willem K.M. Brauers, Bui Cong Cuong, Fausto Cavallaro, Ahmet Çevik, Robby I. Chandra, Kalaivani Chandran, Victor Chang, Chang Su Kim, Jyotir Moy Chatterjee, Victor Christianto, Chunxin Bo, Mihaela Colhon, Shyamal Dalapati, Arindam Dey, Dunqian Cao, Fahad Alsharari, Faruk Karaaslan, Aleksandra Fedajev, Daniela Gîfu, Hina Gulzar, Haitham A. El-Ghareeb, Masooma Raza Hashmi, Hewayda El-Ghawalby, Hoang Viet Long, Le Hoang Son, F. Nirmala Irudayam, Branislav Ivanov, S. Jafari, Jeong Gon Lee, Milena Jevtić, Sudan Jha, Junhui Kim, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Songül Karabatak, Abdullah Kargın, M. Karthika, Ieva Meidute-Kavaliauskiene, Madad Khan, Majid Khan, Manju Khari, Kifayat Ullah, K. Kishore, Kul Hur, Santanu Kumar Patro, Prem Kumar Singh, Raghvendra Kumar, Tapan Kumar Roy, Malayalan Lathamaheswari, Luu Quoc Dat, T. Madhumathi, Tahir Mahmood, Mladjan Maksimovic, Gunasekaran Manogaran, Nivetha Martin, M. Kasi Mayan, Mai Mohamed, Mohamed Talea, Muhammad Akram, Muhammad Gulistan, Raja Muhammad Hashim, Muhammad Riaz, Muhammad Saeed, Rana Muhammad Zulqarnain, Nada A. Nabeeh, Deivanayagampillai Nagarajan, Xenia Negrea, Nguyen Xuan Thao, Jagan M. Obbineni, Angelo de Oliveira, M. Parimala, Gabrijela Popovic, Ishaani Priyadarshini, Yaser Saber, Mehmet Șahin, Said Broumi, A. A. Salama, M. Saleh, Ganeshsree Selvachandran, Dönüș Șengür, Shio Gai Quek, Songtao Shao, Dragiša Stanujkić, Surapati Pramanik, Swathi Sundari Sundaramoorthy, Mirela Teodorescu, Selçuk Topal, Muhammed Turhan, Alptekin Ulutaș, Luige Vlădăreanu, Victor Vlădăreanu, Ştefan Vlăduţescu, Dan Valeriu Voinea, Volkan Duran, Navneet Yadav, Yanhui Guo, Naveed Yaqoob, Yongquan Zhou, Young Bae Jun, Xiaohong Zhang, Xiao Long Xin, Edmundas Kazimieras Zavadskas.
This paper proposes a multi-criteria decision making method called the neutrosophic data analytical hierarchy process (NDAHP) for the single-valued neutrosophic set (SVNS). This method is an extension of the neutrosophic analytic hierarchy process (NAHP) but was designed to handle actual datasets which consists of crisp values. Our proposed NDAHP method uses an objective weighting mechanism whereas all other existing versions of the AHP, fuzzy AHP and other fuzzy based AHP method in literature such as the NAHP and picture fuzzy AHP uses a subjective weighting mechanism to arrive at the decision. This makes our proposed NDAHP method a very objective one as the weightage of the criteria which forms the input of the evaluation matrix are determined in an objective manner using actual data collected for the problem, and hence will not change according to the opinions of the different decision makers which are subjective. The proposed NDAHP method is applied to a multi-criteria decision making problem related to the ranking of the financial performance of five public listed petrochemical companies trading in the main board of the Kuala Lumpur Stock Exchange (KLSE). Actual dataset of 15 financial indices for the five petrochemical companies for 2017 obtained from Yahoo! Finance were used in this study. Following this, a brief comparative study is conducted to evaluate the performance of our NDAHP algorithm against the results of other existing SVNS based decision making methods in literature. The results are compared against actual results obtained from KLSE. To further verify the rankings obtained through each method, the Spearman and Pearson ranking tests are carried out on each of the decision making methods that are studied. It is proved that our proposed NDAHP method produces the most accurate results, and this was further verified from the results of the Spearman and Pearson ranking tests.
Papers on neutrosophic statistics, neutrosophic probability, plithogenic set, paradoxism, neutrosophic set, NeutroAlgebra, etc. and their applications.
This seventh volume of Collected Papers includes 70 papers comprising 974 pages on (theoretic and applied) neutrosophics, written between 2013-2021 by the author alone or in collaboration with the following 122 co-authors from 22 countries: Mohamed Abdel-Basset, Abdel-Nasser Hussian, C. Alexander, Mumtaz Ali, Yaman Akbulut, Amir Abdullah, Amira S. Ashour, Assia Bakali, Kousik Bhattacharya, Kainat Bibi, R. N. Boyd, Ümit Budak, Lulu Cai, Cenap Özel, Chang Su Kim, Victor Christianto, Chunlai Du, Chunxin Bo, Rituparna Chutia, Cu Nguyen Giap, Dao The Son, Vinayak Devvrat, Arindam Dey, Partha Pratim Dey, Fahad Alsharari, Feng Yongfei, S. Ganesan, Shivam Ghildiyal, Bibhas C. Giri, Masooma Raza Hashmi, Ahmed Refaat Hawas, Hoang Viet Long, Le Hoang Son, Hongbo Wang, Hongnian Yu, Mihaiela Iliescu, Saeid Jafari, Temitope Gbolahan Jaiyeola, Naeem Jan, R. Jeevitha, Jun Ye, Anup Khan, Madad Khan, Salma Khan, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Kifayat Ullah, Kishore Kumar P.K., Sujit Kumar De, Prasun Kumar Nayak, Malayalan Lathamaheswari, Luong Thi Hong Lan, Anam Luqman, Luu Quoc Dat, Tahir Mahmood, Hafsa M. Malik, Nivetha Martin, Mai Mohamed, Parimala Mani, Mingcong Deng, Mohammed A. Al Shumrani, Mohammad Hamidi, Mohamed Talea, Kalyan Mondal, Muhammad Akram, Muhammad Gulistan, Farshid Mofidnakhaei, Muhammad Shoaib, Muhammad Riaz, Karthika Muthusamy, Nabeela Ishfaq, Deivanayagampillai Nagarajan, Sumera Naz, Nguyen Dinh Hoa, Nguyen Tho Thong, Nguyen Xuan Thao, Noor ul Amin, Dragan Pamučar, Gabrijela Popović, S. Krishna Prabha, Surapati Pramanik, Priya R, Qiaoyan Li, Yaser Saber, Said Broumi, Saima Anis, Saleem Abdullah, Ganeshsree Selvachandran, Abdulkadir Sengür, Seyed Ahmad Edalatpanah, Shahbaz Ali, Shahzaib Ashraf, Shouzhen Zeng, Shio Gai Quek, Shuangwu Zhu, Shumaiza, Sidra Sayed, Sohail Iqbal, Songtao Shao, Sundas Shahzadi, Dragiša Stanujkić, Željko Stević, Udhayakumar Ramalingam, Zunaira Rashid, Hossein Rashmanlou, Rajkumar Verma, Luige Vlădăreanu, Victor Vlădăreanu, Desmond Jun Yi Tey, Selçuk Topal, Naveed Yaqoob, Yanhui Guo, Yee Fei Gan, Yingcang Ma, Young Bae Jun, Yuping Lai, Hafiz Abdul Wahab, Wei Yang, Xiaohong Zhang, Edmundas Kazimieras Zavadskas, Lemnaouar Zedam.
In this study, the tools that measure the similarity, distance and the degree of fuzziness of Q-neutrosophic soft sets are presented. The definitions of distance, similarity and measures of entropy are introduced. Some formulas for Q-neutrosophic soft entropy were presented. The known Hamming, Euclidean and their normalized distances are generalized to make them well matched with the idea of Q-neutrosophic soft set. The distance measure is subsequently used to define the measure of similarity. Lastly, we expound three applications of the measures of Q-neutrosophic soft sets by applying entropy and the similarity measure to a medical diagnosis and decision making problems.
In this paper, a new method based on PROMETHEE and TODIM is proposed to solve the MADM problem under the single-valued neutrosophic environment. Based on the calculation formula of inflow and outflow in PROMETHEE method, and the calculation formula of overall dominance in the TODIM method, a new integrated formula is obtained.