Download Free An Experimental Study Of Aerosol Particle Deposition In A Three Dimensional Human Lung Airway Bifurcation Model Book in PDF and EPUB Free Download. You can read online An Experimental Study Of Aerosol Particle Deposition In A Three Dimensional Human Lung Airway Bifurcation Model and write the review.

Morphometry of the Human Lung considers the developments in understanding the quantitative anatomy of the lung, and in the correlation of anatomy with physiology. This book is composed of 11 chapters, and begins with an overview of a systematic approach to a quantitative morphologic analysis of the architecture of the human lung, followed by a presentation of general problems of methodology and the derivation of reliable dimensional models of this organ. The subsequent chapters describe the methods of preparation of tissues, methods of random sampling, and adaptation of methodologies from other fields of science. These topics are followed by discussions the mathematical formulations for the translation of the data into the desired geometric forms and a technique of counting. The final chapters look into the mode of distribution and geometric forms that should eventually facilitate mathematical and physical considerations regarding the function of the lungs. These chapters also consider the application of these quantitative methods to the study of pathologic specimens, providing a most timely renovation of morphologic pathology. This book will be of value to pulmonologists, physiologists, and researchers who are interested in lung morphometry.
The #1 guide to aerosol science and technology -now better than ever Since 1982, Aerosol Technology has been the text of choice among students and professionals who need to acquire a thorough working knowledge of modern aerosol theory and applications. Now revised to reflect the considerable advances that have been made over the past seventeen years across a broad spectrum of aerosol-related application areas - from occupational hygiene and biomedical technology to microelectronics and pollution control -this new edition includes: * A chapter on bioaerosols * New sections on resuspension, transport losses, respiratory deposition models, and fractal characterization of particles * Expanded coverage of atmospheric aerosols, including background aerosols and urban aerosols * A section on the impact of aerosols on global warming and ozone depletion. Aerosol Technology, Second Edition also features dozens of new, fully worked examples drawn from a wide range of industrial and research settings, plus new chapter-end practice problems to help readers master the material quickly.
Inhaled Particles integrates all that is known about inhaled particles in a unified treatment. It aims to provide a scientific framework essential to a reasonable understanding of inhaled particles. The emphasis is placed on demonstrating the key roles of lung morphology on airflow and particle transport as well as identifying physical and biological factors that influence deposition. Special attention is paid to maintaining consistency of treatment and a balance between theoretical modeling and experimental measurements. The book covers all important aspects of inhaled particles including inhalability, aerosol dispersion, particle deposition, and clearance. It reviews concisely the basic background of lung morphology, respiratory physiology, aerodynamics, and aerosol science pertinent to the subject. Essential aspects of health effects and applications are also included. An easy-to-read, self contained introduction to the field An excellent source of updated research information Useful for students and professionals in aerosol science, environmental health science, occupational hygiene, health physics and biomedical engineering
"The combination of scientific and institutional integrity represented by this book is unusual. It should be a model for future endeavors to help quantify environmental risk as a basis for good decisionmaking." â€"William D. Ruckelshaus, from the foreword. This volume, prepared under the auspices of the Health Effects Institute, an independent research organization created and funded jointly by the Environmental Protection Agency and the automobile industry, brings together experts on atmospheric exposure and on the biological effects of toxic substances to examine what is knownâ€"and not knownâ€"about the human health risks of automotive emissions.
Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS)* at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dis semination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all concerned if the printing and distribution of the volumes were handled by an international publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 39 (thesis year 1994) a total of 13,953 thesis titles from 21 Canadian and 159 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this impor tant annual reference work. While Volume 39 reports theses submitted in 1994, on occasion, certain uni versities do report theses submitted in previous years but not reported at the time.
Drug therapy via inhalation route is at the cutting edge of modern drug delivery research. There has been significant progress on the understanding of drug therapy via inhalation products. However, there are still problems associated with their formulation design, including the interaction between the active pharmaceutical ingredient(s) (APIs), excipients and devices. This book seeks to cover some of the most pertinent issues and challenges of such formulation design associated with industrial production and desirable clinical outcome. The chapter topics have been selected with a view to integrating the factors that require consideration in the selection and design of device and formulation components which impact upon patient usability and clinical effectiveness. The challenges involved with the delivery of macromolecules by inhalation to both adult and pediatric patients are also covered. Written by leading international experts from both academia and industry, the book will help readers (formulation design scientists, researchers and post-graduate and specialized undergraduate students) develop a deep understanding of key aspects of inhalation formulations as well as detail ongoing challenges and advances associated with their development.
Comparative Biology of the Normal Lung, Second Edition, offers a rigorous and comprehensive reference for all those involved in pulmonary research. This fully updated work is divided into sections on anatomy and morphology, physiology, biochemistry, and immunological response. It continues to provide a unique comparative perspective on the mammalian lung. This edition includes several new chapters and expanded content, including aging and development of the normal lung, mechanical properties of the lung, genetic polymorphisms, the comparative effect of stress of pulmonary immune function, oxygen signaling in the mammalian lung and much more. By addressing scientific advances and critical issues in lung research, this 2nd edition is a timely and valuable work on comparative data for the interpretation of studies of animal models as compared to the human lung. - Edited and authored by experts in the field to provide an excellent and timely review of cross-species comparisons that will help you interpret and compare data from animal studies to human findings - Incorporates lung anatomy and physiology, cell specific interactions and immunological responses to provide you with a single and unique multidisciplinary source on the comparative biology of the normal lung - Includes new and expanded content on neonatal and aged lungs, developmental processes, cell signaling, antioxidants, airway cells, safety pharmacology and much more - Section IV on Physical and Immunological Defenses has been significantly updated with 9 new chapters and an increased focus on the pulmonary immunological system
This comprehensive book examines the recent research investigating the characteristics and composition of different types of environmental tobacco smoke (ETS) and discusses possible health effects of ETS. The volume presents an overview of methods used to determine exposures to environmental smoke and reviews both chronic and acute health effects. Many recommendations are made for areas of further research, including the differences between smokers and nonsmokers in absorbing, metabolizing, and excreting the components of ETS, and the possible effects of ETS exposure during childhood and fetal life.
Traditional research methodologies in the human respiratory system have always been challenging due to their invasive nature. Recent advances in medical imaging and computational fluid dynamics (CFD) have accelerated this research. This book compiles and details recent advances in the modelling of the respiratory system for researchers, engineers, scientists, and health practitioners. It breaks down the complexities of this field and provides both students and scientists with an introduction and starting point to the physiology of the respiratory system, fluid dynamics and advanced CFD modeling tools. In addition to a brief introduction to the physics of the respiratory system and an overview of computational methods, the book contains best-practice guidelines for establishing high-quality computational models and simulations. Inspiration for new simulations can be gained through innovative case studies as well as hands-on practice using pre-made computational code. Last but not least, students and researchers are presented the latest biomedical research activities, and the computational visualizations will enhance their understanding of physiological functions of the respiratory system.