Download Free An Evaluation Of Field Measurements Of Soil Compaction Book in PDF and EPUB Free Download. You can read online An Evaluation Of Field Measurements Of Soil Compaction and write the review.

Soil physical measurements are essential for solving many natural resource management problems. This operational laboratory and field handbook provides, for the first time, a standard set of methods that are cost-effective and well suited to land resource survey. It provides: *practical guidelines on the soil physical measurements across a range of soils, climates and land uses; *straightforward descriptions for each method (including common pitfalls) that can be applied by people with a rudimentary knowledge of soil physics, and *guidelines on the interpretation of results and integration with land resource assessment. Soil Physical Measurement And Interpretation for Land Evaluation begins with an introduction to land evaluation and then outlines procedures for field sampling. Twenty detailed chapters cover pore space relations, water retention, hydraulic conductivity, water table depth, dispersion, aggregation, particle size, shrinkage, Atterburg limits and strength. The book includes procedures for estimating soil physical properties from more readily available data and shows how soil physical data can be integrated into land planning and management decisions.
Soil compaction is an important indicator of soil quality, yet few practical methods are available to quantitatively measure this variable. Although an assessment of the areal extent of soil compaction is included as part of the soil indicator portion of the Forest Inventory & Analysis (FIA) program, no quantitative measurement of the degree of soil compaction is made. We tested a small, lightweight pocket penetrometer that measures soil compression strength as a simple, quantitative measure of the degree of compaction of mineral soils under forested conditions. Soil compression strengths were significantly higher in compacted trails and areas than in adjacent undisturbed locations. In contrast, no significant difference in soil compression strength was found between rutted trails and adjacent undisturbed areas. A protocol is suggested for further pilot testing of this device as part of the soil indicator assessment. The main disadvantage of this device is that many of the compacted soils had compression strengths higher than the maximum measurable value of 4.5 tons/ft2. Despite this limitation, this device can rapidly and easily distinguish between compacted and uncompacted areas in the field. Time previously spent by field crews trying to identify qualitative evidences of compaction can instead be used to provide a quantitative measure of the degree of compaction, which would strengthen the analysis and interpretation of the soil quality indicator.
Visual Soil Evaluation (VSE) provides land users and environmental authorities with the tools to assess soil quality for crop performance. This book describes the assessment of the various structural conditions of soil, especially after quality degradation such as compaction, erosion or organic matter loss. Covering a broad range of land types from abandoned peats to prime arable land, this useful handbook assesses yield potential across a range of scales. It also appraises the use of VSE in determining the potential of different land types for carbon storage, greenhouse gas emissions and nutrient leaching, and for diagnosing and rectifying erosion and compaction in soils.