Download Free An Econometric Decomposition Of Aggregate Data Book in PDF and EPUB Free Download. You can read online An Econometric Decomposition Of Aggregate Data and write the review.

Recent literature and new data help determine plausible bounds to some key demographic differences between the poor and non-poor in the developing world. The author estimates that selective mortality-whereby poorer people tend to have higher death rates-accounts for 10-30 percent of the developing world's trend rate of "$1 a day" poverty reduction in the 1990s. However, in a neighborhood of plausible estimates, differential fertility-whereby poorer people tend also to have higher birth rates-has had a more than offsetting poverty-increasing effect. The net impact of differential natural population growth represents 10-50 percent of the trend rate of poverty reduction.
This book addresses several index decomposition analysis methods to assess progress made by EU countries in the last decade in relation to energy and climate change concerns. Several applications of these techniques are carried out in order to decompose changes in both energy and environmental aggregates. In addition to this, a new methodology based on classical spline approximations is introduced, which provides useful mathematical and statistical properties. Once a suitable set of determinant factors has been identified, these decomposition methods allow the researcher to quantify the respective contributions of these factors. A proper interpretation of findings enables the design of strategies and a number of energy and environmental policies to control the variables of interest. This book also analyses the impact of several factors that allow control of these variables; among them, assessment of the specific contribution of improved energy efficiency is particularly relevant. A number of divisia-index-based techniques for decomposing changes in a generic indicator are now available, and these range from classical techniques based on Laspeyres and Paasche weights to more refined approaches relying on logarithmic mean weighting schemes. This book is intended for undergraduates and graduates of energy economics and environmental sciences, environmental policy advisors, and industrial engineers.
The complexity and volatility of energy markets creates strong demand for quantitative analysis and econometric techniques. This book offers an introduction to the state of the art in econometric modelling applied to the most pertinent issues in today's energy markets for a better understanding of the working of energy systems and energy economics.
In the last 20 years, econometric theory on panel data has developed rapidly, particularly for analyzing common behaviors among individuals over time. Meanwhile, the statistical methods employed by applied researchers have not kept up-to-date. This book attempts to fill in this gap by teaching researchers how to use the latest panel estimation methods correctly. Almost all applied economics articles use panel data or panel regressions. However, many empirical results from typical panel data analyses are not correctly executed. This book aims to help applied researchers to run panel regressions correctly and avoid common mistakes. The book explains how to model cross-sectional dependence, how to estimate a few key common variables, and how to identify them. It also provides guidance on how to separate out the long-run relationship and common dynamic and idiosyncratic dynamic relationships from a set of panel data. Aimed at applied researchers who want to learn about panel data econometrics by running statistical software, this book provides clear guidance and is supported by a full range of online teaching and learning materials. It includes practice sections on MATLAB, STATA, and GAUSS throughout, along with short and simple econometric theories on basic panel regressions for those who are unfamiliar with econometric theory on traditional panel regressions.
This book is concerned with recent developments in time series and panel data techniques for the analysis of macroeconomic and financial data. It provides a rigorous, nevertheless user-friendly, account of the time series techniques dealing with univariate and multivariate time series models, as well as panel data models. It is distinct from other time series texts in the sense that it also covers panel data models and attempts at a more coherent integration of time series, multivariate analysis, and panel data models. It builds on the author's extensive research in the areas of time series and panel data analysis and covers a wide variety of topics in one volume. Different parts of the book can be used as teaching material for a variety of courses in econometrics. It can also be used as reference manual. It begins with an overview of basic econometric and statistical techniques, and provides an account of stochastic processes, univariate and multivariate time series, tests for unit roots, cointegration, impulse response analysis, autoregressive conditional heteroskedasticity models, simultaneous equation models, vector autoregressions, causality, forecasting, multivariate volatility models, panel data models, aggregation and global vector autoregressive models (GVAR). The techniques are illustrated using Microfit 5 (Pesaran and Pesaran, 2009, OUP) with applications to real output, inflation, interest rates, exchange rates, and stock prices.
In the last decade, time-series econometrics has made extraordinary developments on unit roots and cointegration. However, this progress has taken divergent directions, and has been subjected to criticism from outside the field. In this book, Professor Hatanaka surveys the field, examines those portions that are useful for macroeconomics, and responds to the criticism. His survey of the literature covers not only econometric methods, but also the application of these methods to macroeconomic studies. The most vigorous criticism has been that unit roots to do not exist in macroeconomic variables, and thus that cointegration analysis is irrelevant to macroeconomics. The judgement of this book is that unit roots are present in macroeconomic variables when we consider periods of 20 to 40 years, but that the critics may be right when periods of 100 years are considered. Fortunately, most of the time series data used for macroeconomic studies cover fall within the shorter time span. Among the numerous methods for unit roots and cointegration, those useful from macroeconomic studies are examined and explained in detail, without overburdening the reader with unnecessary mathematics. Other, less applicable methods are dicussed briefly, and their weaknesses are exposed. Hatanaka has rigourously based his judgements about usefulness on whether the inference is appropriate for the length of the data sets available, and also on whether a proper inference can be made on the sort of propositions that macroeconomists wish to test. This book highlights the relations between cointegration and economic theories, and presents cointegrated regression as a revolution in econometric methods. Its analysis is of relevance to academic and professional or applied econometricians. Step-by-step explanations of concepts and techniques make the book a self-contained text for graduate students.
Following theseminal Palgrave Handbook of Econometrics: Volume I , this second volume brings together the finestacademicsworking in econometrics today andexploresapplied econometrics, containing contributions onsubjects includinggrowth/development econometrics and applied econometrics and computing.
As conceived by the founders of the Econometric Society, econometrics is a field that uses economic theory and statistical methods to address empirical problems in economics. It is a tool for empirical discovery and policy analysis. The chapters in this volume embody this vision and either implement it directly or provide the tools for doing so. This vision is not shared by those who view econometrics as a branch of statistics rather than as a distinct field of knowledge that designs methods of inference from data based on models of human choice ...
Illustrates the scope and diversity of modern applications, reviews advances, and highlights many desirable aspects of inference and computations. This work presents an historical overview that describes key contributions to development and makes predictions for future directions.
It is the editor’s distinct privilege to gather this collection of papers that honors Subhal Kumbhakar’s many accomplishments, drawing further attention to the various areas of scholarship that he has touched.