Download Free An Automated Procedure For Covariation Based Detection Of Rna Structure Book in PDF and EPUB Free Download. You can read online An Automated Procedure For Covariation Based Detection Of Rna Structure and write the review.

This paper summarizes our investigations into the computational detection of secondary and tertiary structure of ribosomal RNA. We have developed a new automated procedure that not only identifies potential bondings of secondary and tertiary structure, but also provides the covariation evidence that supports the proposed bondings, and any counter-evidence that can be detected in the known sequences. A small number of previously unknown bondings have been detected in individual RNA molecules (16S rRNA and 7S RNA) through the use of our automated procedure. Currently, we are systematically studying mitochondrial rRNA. Our goal is to detect tertiary structure within 16S rRNA and quaternary structure between 16S and 23S rRNA. Our ultimate hope is that automated covariation analysis will contribute significantly to a refined picture of ribosome structure. Our colleagues in biology have begun experiments to test certain hypotheses suggested by an examination of our program's output. These experiments involve sequencing key portions of the 23S ribosomal RNA for species in which the known 16S ribosomal RNA exhibits variation (from the dominant pattern) at the site of a proposed bonding. The hope is that the 23S ribosomal RNA of these species will exhibit corresponding complementary variation or generalized covariation. 24 refs.
RNA molecules form complex higher-order structures which are essential to perform their biological activities. The accurate prediction of an RNA secondary structure and other higher-order structural constraints will significantly enhance the understanding of RNA molecules and help interpret their functions. Covariation analysis is the predominant computational method to accurately predict the base pairs in the secondary structure of RNAs. I developed a novel and powerful covariation method, Phylogenetic Events Count (PEC) method, to determine the positional covariation. The application of the PEC method onto a bacterial 16S rRNA sequence alignment proves that it is more sensitive and accurate than other mutual information based method in the identification of base-pairs and other structural constraints of the RNA structure. The analysis also discoveries a new type of structural constraint -- neighbor effect, between sets of nucleotides that are in proximity in the three dimensional RNA structure with weaker but significant covariation with one another. Utilizing these covariation methods, a proposed secondary structure model of an entire HIV-1 genome RNA is evaluated. The results reveal that vast majority of the predicted base pairs in the proposed HIV-1 secondary structure model do not have covariation, thus lack the support from comparative analysis. Generating the most accurate multiple sequence alignment is fundamental and essential of performing high-quality comparative analysis. The rapid determination of nucleic acid sequences dramatically increases the number of available sequences. Thus developing the accurate and rapid alignment program for these RNA sequences has become a vital and challenging task to decipher the maximum amount of information from the data. A template-based RNA sequence alignment system, CRWAlign-2, is developed to accurately align new sequences to an existing reference sequence alignment based on primary and secondary structural similarity. A comparison of CRWAlign-2 with eight alternative widely-used alignment programs reveals that CRWAlign-2 outperforms other programs in aligning new sequences with higher accuracy. In addition to aligning sequences accurately, CRWAlign-2 also creates secondary structure models for each sequence to be aligned, which provides very useful information for the comparative analysis of RNA sequences and structures. The CRWAlign-2 program also provides opportunities for multiple areas including the identification of chimeric 16S rRNA sequences generated in microbiome sequencing projects.
While structure-function relationships of proteins have been studied for a long time, structural studies of RNA face additional challenges. Nevertheless, with the continuous discovery of novel RNA molecules with key cellular functions and of novel pathways and interaction networks, the need for structural information of RNA is still increasing. This volume provides an introduction into techniques to assess structure and folding of RNA. Each chapter explains the theoretical background of one technique, and illustrates possibilities and limitations in selected application examples.
The existence of genes for RNA molecules not coding for proteins (ncRNAs) has been recognized since the 1950's, but until recently, aside from the critically important ribosomal and transfer RNA genes, most focus has been on protein coding genes. However, a long series of striking discoveries, from RNA's ability to carry out catalytic function, to discovery of riboswitches, microRNAs and other ribo-regulators performing critical tasks in essentially all living organisms, has created a burgeoning interest in this primordial component of the biosphere. However, the structural characteristics and evolutionary constraints on RNA molecules are very different from those of proteins, necessitating development of a completely new suite of informatic tools to address these challenges. In RNA Sequence, Structure, Function: Computational and Bioinformatic Methods, expert researchers in the field describe a substantial and relevant fraction of these methodologies from both practical and computational/algorithmic perspectives. Focusing on both of these directions addresses both the biologist interested in knowing more about RNA bioinformatics as well as the bioinformaticist interested in more detailed aspects of the algorithms. Written in the highly successful Methods in Molecular Biology series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results. Thorough and intuitive, RNA Sequence, Structure, Function: Computational and Bioinformatic Methods aids scientists in continuing to study key methods and principles of RNA bioinformatics.