Download Free Ammonia Removal In A Physical Chemical Wastewater Treatment Process Book in PDF and EPUB Free Download. You can read online Ammonia Removal In A Physical Chemical Wastewater Treatment Process and write the review.

Describes 3 basic physical-chemical nitrogen-removal techniques available for application in wastewater treatment plants and discusses advantages and disadvantages of each process. Techniques include: ammonia stripping, selective ion exchange, and breakpoint chlorination.
Applications of New Concepts of Physical-Chemical Wastewater Treatment deals with novel concepts of physical-chemical wastewater treatment, with particular reference to their engineering applications. Topics covered range from ultrahigh rate filtration of municipal wastewater to the applicability of carbon adsorption in the treatment of petrochemical wastewaters, along with regeneration of activated carbon and dewatering of physical-chemical sludges. Comprised of 31 chapters, this volume begins with a discussion on the use of physical-chemical methods for the treatment of municipal wastes and for direct wastewater treatment. The following chapters focus on the interrelationships between biological treatment and physicochemical treatment; some problems associated with the treatment of sewage by non-biological processes; treatment of wastes generated by metal finishing and engineering industries; and the principles and practice of granular carbon reactivation. The precipitation of calcium phosphate in wastewaters is also considered, together with the use of surface stirrers for ammonia desorption from ponds. This book will be a valuable resource for chemists, engineers, government officials, and environmental policymakers.
For information on the online course in Biological Wastewater Treatment from UNESCO-IHE, visit: http://www.iwapublishing.co.uk/books/biological-wastewater-treatment-online-course-principles-modeling-and-design Over the past twenty years, the knowledge and understanding of wastewater treatment have advanced extensively and moved away from empirically-based approaches to a first principles approach embracing chemistry, microbiology, physical and bioprocess engineering, and mathematics. Many of these advances have matured to the degree that they have been codified into mathematical models for simulation with computers. For a new generation of young scientists and engineers entering the wastewater treatment profession, the quantity, complexity and diversity of these new developments can be overwhelming, particularly in developing countries where access is not readily available to advanced level tertiary education courses in wastewater treatment. Biological Wastewater Treatment addresses this deficiency. It assembles and integrates the postgraduate course material of a dozen or so professors from research groups around the world that have made significant contributions to the advances in wastewater treatment. The book forms part of an internet-based curriculum in biological wastewater treatment which also includes: Summarized lecture handouts of the topics covered in book Filmed lectures by the author professors Tutorial exercises for students self-learning Upon completion of this curriculum the modern approach of modelling and simulation to wastewater treatment plant design and operation, be it activated sludge, biological nitrogen and phosphorus removal, secondary settling tanks or biofilm systems, can be embraced with deeper insight, advanced knowledge and greater confidence.
The first edition of this book was published in 2008 and it went on to become IWA Publishing’s bestseller. Clearly there was a need for it because over the twenty years prior to 2008, the knowledge and understanding of wastewater treatment had advanced extensively and moved away from empirically-based approaches to a fundamental first-principles approach based on chemistry, microbiology, physical and bioprocess engineering, mathematics and modelling. However the quantity, complexity and diversity of these new developments was overwhelming for young water professionals, particularly in developing countries without readily available access to advanced-level tertiary education courses in wastewater treatment. For a whole new generation of young scientists and engineers entering the wastewater treatment profession, this book assembled and integrated the postgraduate course material of a dozen or so professors from research groups around the world who have made significant contributions to the advances in wastewater treatment. This material had matured to the degree that it had been codified into mathematical models for simulation with computers. The first edition of the book offered, that upon completion of an in-depth study of its contents, the modern approach of modelling and simulation in wastewater treatment plant design and operation could be embraced with deeper insight, advanced knowledge and greater confidence, be it activated sludge, biological nitrogen and phosphorus removal, secondary settling tanks, or biofilm systems. However, the advances and developments in wastewater treatment have accelerated over the past 12 years since publication of the first edition. While all the chapters of the first edition have been updated to accommodate these advances and developments, some, such as granular sludge, membrane bioreactors, sulphur conversion-based bioprocesses and biofilm reactors which were new in 2008, have matured into new industry approaches and are also now included in this second edition. The target readership of this second edition remains the young water professionals, who will still be active in the field of protecting our precious water resources long after the aging professors who are leading some of these advances have retired. The authors, all still active in the field, are aware that cleaning dirty water has become more complex but that it is even more urgent now than 12 years ago, and offer this second edition to help the young water professionals engage with the scientific and bioprocess engineering principles of wastewater treatment science and technology with deeper insight, advanced knowledge and greater confidence built on stronger competence.