Download Free All Digital Smart Temperature Sensor With Self Calibration In 65nm Cmos Technology Book in PDF and EPUB Free Download. You can read online All Digital Smart Temperature Sensor With Self Calibration In 65nm Cmos Technology and write the review.

One of the most notable features of nanometer scale CMOS technology is the increasing magnitude of variability of the key device parameters affecting performance of integrated circuits. The growth of variability can be attributed to multiple factors, including the difficulty of manufacturing control, the emergence of new systematic variation-generating mechanisms, and most importantly, the increase in atomic-scale randomness, where device operation must be described as a stochastic process. In addition to wide-sense stationary stochastic device variability and temperature variation, existence of non-stationary stochastic electrical noise associated with fundamental processes in integrated-circuit devices represents an elementary limit on the performance of electronic circuits. In an attempt to address these issues, Stochastic Process Variation in Deep-Submicron CMOS: Circuits and Algorithms offers unique combination of mathematical treatment of random process variation, electrical noise and temperature and necessary circuit realizations for on-chip monitoring and performance calibration. The associated problems are addressed at various abstraction levels, i.e. circuit level, architecture level and system level. It therefore provides a broad view on the various solutions that have to be used and their possible combination in very effective complementary techniques for both analog/mixed-signal and digital circuits. The feasibility of the described algorithms and built-in circuitry has been verified by measurements from the silicon prototypes fabricated in standard 90 nm and 65 nm CMOS technology.
This book discusses the advantages and challenges of Body-Biasing for integrated circuits and systems, together with the deployment of the design infrastructure needed to generate this Body-Bias voltage. These new design solutions enable state of the art energy efficiency and system flexibility for the latest applications, such as Internet of Things and 5G communications.
This book describes for readers technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of the Internet of Things (IoTs). The authors provide a multidisciplinary view of sensor technology from MEMS, biological, chemical, and electrical domains and showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc. Unlike earlier books on sensors, this book provides a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms.
This book describes the analysis and design of precision temperature sensors in CMOS IC technology, focusing on so-called smart temperature sensors, which provide a digital output signal that can be readily interpreted by a computer. The text shows how temperature characteristics can be used to obtain an accurate digital temperature reading. The book ends with a detailed description of three prototypes, one of which achieves the best performance reported to date.
Thermal Sensors is intended as a comprehensive and accessible reference for designers and users of thermal sensors. Many different physical quantities can be converted easily and accurately into temperature differences using thermal techniques. These temperature differences can be detected with temperature and temperature-difference sensors. In a thermal sensor the thermal converter and the temperature sensor are combined in a single accurate device. This book gives an overview and deals with the design aspects of thermal and temperature sensors, with an emphasis on sensors based on silicon technology. The temperature sensors described are based on the use of various types of sensitive elements, such as platinum resistors, thermistors and special integrated circuits. The thermal sensors described include flow, conductivity, infrared, vacuum, humidity and calorimetric sensors, and ac-dc converters, thus providing a comprehensive overview of all thermal sensors, with practical examples of each type.
This book describes the design and theory of high-accuracy smart temperature sensors in CMOS technology. The book's major triumph is the realization of a smart temperature sensor of such high accuracy that it can be applied without any form of calibration. In addition, the authors provide the reader with an elaborate overview of dynamic offset-cancellation techniques and CMOS bandgap references, which are the basic techniques and building blocks that determine the overall accuracy of CMOS smart temperature sensors. The book's concluding chapters focus on realizations where other aspects like ultra low-design and remote temperature sensing are discussed. High-Accuracy CMOS Smart Temperature Sensors is essential reading for anybody with an academic or professional interest in semiconductor design.
This book constitutes the refereed proceedings of the 21st International Symposium on VLSI Design and Test, VDAT 2017, held in Roorkee, India, in June/July 2017. The 48 full papers presented together with 27 short papers were carefully reviewed and selected from 246 submissions. The papers were organized in topical sections named: digital design; analog/mixed signal; VLSI testing; devices and technology; VLSI architectures; emerging technologies and memory; system design; low power design and test; RF circuits; architecture and CAD; and design verification.
This book describes the design and implementation of energy-efficient smart (digital output) temperature sensors in CMOS technology. To accomplish this, a new readout topology, namely the zoom-ADC, is presented. It combines a coarse SAR-ADC with a fine Sigma-Delta (SD) ADC. The digital result obtained from the coarse ADC is used to set the reference levels of the SD-ADC, thereby zooming its full-scale range into a small region around the input signal. This technique considerably reduces the SD-ADC’s full-scale range, and notably relaxes the number of clock cycles needed for a given resolution, as well as the DC-gain and swing of the loop-filter. Both conversion time and power-efficiency can be improved, which results in a substantial improvement in energy-efficiency. Two BJT-based sensor prototypes based on 1st-order and 2nd-order zoom-ADCs are presented. They both achieve inaccuracies of less than ±0.2°C over the military temperature range (-55°C to 125°C). A prototype capable of sensing temperatures up to 200°C is also presented. As an alternative to BJTs, sensors based on dynamic threshold MOSTs (DTMOSTs) are also presented. It is shown that DTMOSTs are capable of achieving low inaccuracy (±0.4°C over the military temperature range) as well as sub-1V operation, making them well suited for use in modern CMOS processes.
This book offers the first comprehensive view on integrated circuit and system design for the Internet of Things (IoT), and in particular for the tiny nodes at its edge. The authors provide a fresh perspective on how the IoT will evolve based on recent and foreseeable trends in the semiconductor industry, highlighting the key challenges, as well as the opportunities for circuit and system innovation to address them. This book describes what the IoT really means from the design point of view, and how the constraints imposed by applications translate into integrated circuit requirements and design guidelines. Chapter contributions equally come from industry and academia. After providing a system perspective on IoT nodes, this book focuses on state-of-the-art design techniques for IoT applications, encompassing the fundamental sub-systems encountered in Systems on Chip for IoT: ultra-low power digital architectures and circuits low- and zero-leakage memories (including emerging technologies) circuits for hardware security and authentication System on Chip design methodologies on-chip power management and energy harvesting ultra-low power analog interfaces and analog-digital conversion short-range radios miniaturized battery technologies packaging and assembly of IoT integrated systems (on silicon and non-silicon substrates). As a common thread, all chapters conclude with a prospective view on the foreseeable evolution of the related technologies for IoT. The concepts developed throughout the book are exemplified by two IoT node system demonstrations from industry. The unique balance between breadth and depth of this book: enables expert readers quickly to develop an understanding of the specific challenges and state-of-the-art solutions for IoT, as well as their evolution in the foreseeable future provides non-experts with a comprehensive introduction to integrated circuit design for IoT, and serves as an excellent starting point for further learning, thanks to the broad coverage of topics and selected references makes it very well suited for practicing engineers and scientists working in the hardware and chip design for IoT, and as textbook for senior undergraduate, graduate and postgraduate students ( familiar with analog and digital circuits).