Download Free Alfven Waves In Inhomogeneous Magnetic Fields Book in PDF and EPUB Free Download. You can read online Alfven Waves In Inhomogeneous Magnetic Fields and write the review.

This valuable introduction to the physics of Alfven waves in laboratory and space plasmas is accessible to anyone with a elementary knowledge of plasma physics. The book will give graduate students all the background information necessary to understand the research literature. Much of the material is recent and may contain some surprises even for experts.
Electromagnetic Instabilities in an Inhomogeneous Plasma presents a comprehensive survey of the theory of electromagnetic instabilities in a magnetized inhomogeneous plasma, mainly in the classical approximation of straight and parallel magnetic field lines as well as magnetic-field curvature effects. Using his expertise and experience, the author skillfully guides the reader through the theory; presenting the most important results from leading Russian and Western scientists. This timely and important work will enable new or experienced researchers to improve their knowledge of this important field of plasma research.
Low-frequency wave modes of magnetized inhomogeneous plasmas have been subject to intense study in the last decade because they play important roles in the transport of energy in the plasmas. The "Alfvén wave heating" scheme has been investigated as a supplementary heating scheme for fusion plasma devices, and it has been invoked as a model of the heating of the solar and stellar coronae. This book covers the latest research into the properties and applications of low-frequency wave modes in magnetized plasmas, the Alfvén waves and magneto-acoustic waves, in the context of laboratory, space and astrophysical plasmas. In particular, non-ideal effects on the dispersion relation and absorption properties of linear and non-linear waves are included, such as ion-cyclotron effects, friction between the ionized plasma and a background gas of neutral atoms, and the interaction of the plasma with dust particles. The book also surveys the theory of Alfvén and magnetoacoustic waves in inhomogeneous plasmas, as occur in realistic laboratory, space and astrophysical plasmas, with resulting localized wave modes such as surface waves. Waves are considered under a variety of plasma conditions, ranging from cold cosmic plasmas, to hot laboratory and solar plasmas, to the relativistic plasmas around pulsars.
Propagation of hydromagnetic waves in a nonviscous, perfectly conducting, incompressible fluid is studied in a linear approximation, under the assumption of an unperturbed magnetic field Ho = Ho (x)n where n is a constant unit vector. It is shown that there are two possible types of waves: (i) The generalized Alfven waves, propagating along the lines of force with a velocity u = Ho /(4)1/2 and differing from ordinary Alfven waves in that they may have a non-zero longitudinal velocity component; (ii) Waves analogous to the gravity waves which can, in general, propagate across the lines of force. In particular, it is shown that if u = const. + a x, those waves travel in a direction perpendicular to n and to the x-axis with a group velocity 1/4 / and a phase velocity 1/2 / . (Author).
The subject of geomagnetic micropulsations has developed extremely rapidly and it is difficult to know when is an appropriate time to pause and assess the sum total of our knowledge-both observational and theoretical. There has in recent years been a tremendous increase in both the quantity and quality of data and also many theoretical ad vances in our understanding of the phenomenon. Undoubtedly there will be further progress in both areas but it seems worthwhile now to review both our knowledge and our ignorance. This book was essen tially completed by the end of April 1969 and tries to give a summary of the subject up to that time. The Earth is enclosed in the magnetosphere, a hollow carved out of the solar wind by the Earth's magnetic field. Above the ionosphere there is a very tenuous thermal plasma of partially ionized hydrogen in diffusive equilibrium with magnetic and gravitational forces, and ener getic protons and electrons that constitute the trapped Van Allen ra diation belts. Throughout this anisotropic and inhomogeneous plasma, natural and man-made electromagnetic energy propagates in a wide variety of modes and frequency bands. This book is concerned with that class of natural signals called geomagnetic micropulsations-short period (usually of the order of seconds or minutes) fluctuations of the Earth's magnetic field.
Alfvén Waves Across Heliophysics Progress, Challenges, and Opportunities Alfvén waves are fundamental to the dynamics of space plasmas. Recent advances in our knowledge about Alfvén waves have come from several directions, including new space missions to unexplored heliospheric regions, sophisticated rocket campaigns in the auroral zone, enlarged magnetometer arrays and radar networks, and significant advances in computer modeling. Alfvén Waves Across Heliophysics: Progress, Challenges, and Opportunities is an interdisciplinary collaboration from different space science communities to review recent and current Alfvén wave research. Volume highlights include: Alfvén waves in the solar atmosphere Alfvén waves at the giant planets Alfvén waves at Mars Alfvén waves in moon-magnetosphere systems Alfvén waves in geospace Alfvén waves in the laboratory The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.