Download Free Ai Self Driving Cars Evolvement Book in PDF and EPUB Free Download. You can read online Ai Self Driving Cars Evolvement and write the review.

Autonomous Vehicles and Future Mobility presents novel methods for examining the long-term effects on individuals, society, and on the environment for a wide range of forthcoming transport scenarios, such as self-driving vehicles, workplace mobility plans, demand responsive transport analysis, mobility as a service, multi-source transport data provision, and door-to-door mobility. With the development and realization of new mobility options comes change in long-term travel behavior and transport policy. This book addresses these impacts, considering such key areas as the attitude of users towards new services, the consequences of introducing new mobility forms, the impacts of changing work related trips, and more. By examining and contextualizing innovative transport solutions in this rapidly evolving field, the book provides insights into the current implementation of these potentially sustainable solutions. It will serve as a resource of general guidelines and best practices for researchers, professionals and policymakers.
An exclusive insider look at the making of self-driving cars and how advances in Artificial Intelligence (AI) are helping to achieve this moonshot goal. Apple CEO Tim Cook famously proclaimed that the development of a self-driving car is "the Mother of all AI projects." Read about the good, bad, and the ugly of self-driving cars. Author Dr. Lance B. Eliot is a popular AI expert, entrepreneur and seasoned AI developer known for his expertise and leadership in the field of self-driving cars.
The automotive industry appears close to substantial change engendered by “self-driving” technologies. This technology offers the possibility of significant benefits to social welfare—saving lives; reducing crashes, congestion, fuel consumption, and pollution; increasing mobility for the disabled; and ultimately improving land use. This report is intended as a guide for state and federal policymakers on the many issues that this technology raises.
Explore self-driving car technology using deep learning and artificial intelligence techniques and libraries such as TensorFlow, Keras, and OpenCV Key FeaturesBuild and train powerful neural network models to build an autonomous carImplement computer vision, deep learning, and AI techniques to create automotive algorithmsOvercome the challenges faced while automating different aspects of driving using modern Python libraries and architecturesBook Description Thanks to a number of recent breakthroughs, self-driving car technology is now an emerging subject in the field of artificial intelligence and has shifted data scientists' focus to building autonomous cars that will transform the automotive industry. This book is a comprehensive guide to use deep learning and computer vision techniques to develop autonomous cars. Starting with the basics of self-driving cars (SDCs), this book will take you through the deep neural network techniques required to get up and running with building your autonomous vehicle. Once you are comfortable with the basics, you'll delve into advanced computer vision techniques and learn how to use deep learning methods to perform a variety of computer vision tasks such as finding lane lines, improving image classification, and so on. You will explore the basic structure and working of a semantic segmentation model and get to grips with detecting cars using semantic segmentation. The book also covers advanced applications such as behavior-cloning and vehicle detection using OpenCV, transfer learning, and deep learning methodologies to train SDCs to mimic human driving. By the end of this book, you'll have learned how to implement a variety of neural networks to develop your own autonomous vehicle using modern Python libraries. What you will learnImplement deep neural network from scratch using the Keras libraryUnderstand the importance of deep learning in self-driving carsGet to grips with feature extraction techniques in image processing using the OpenCV libraryDesign a software pipeline that detects lane lines in videosImplement a convolutional neural network (CNN) image classifier for traffic signal signsTrain and test neural networks for behavioral-cloning by driving a car in a virtual simulatorDiscover various state-of-the-art semantic segmentation and object detection architecturesWho this book is for If you are a deep learning engineer, AI researcher, or anyone looking to implement deep learning and computer vision techniques to build self-driving blueprint solutions, this book is for you. Anyone who wants to learn how various automotive-related algorithms are built, will also find this book useful. Python programming experience, along with a basic understanding of deep learning, is necessary to get the most of this book.
A vital book by industry thought leader and global AI expert, Dr. Lance Eliot, and based on his popular AI Insider series and podcasts, this fascinating book provides evolving advances for the advent of AI self-driving driverless cars. Included too are keen insights about the practical application of Artificial Intelligence (AI) and Machines Learning (ML).
Better public policies can make the road smoother for self-driving vehicles and the society that soon will depend on them. Whether you find the idea of autonomous vehicles to be exciting or frightening, the truth is that they will soon become a significant everyday presence on streets and highways—not just a novel experiment attracting attention or giggles and sparking fears of runaway self-driving cars. The emergence of these vehicles represents a watershed moment in the history of transportation. If properly encouraged, this innovation promises not only to vastly improve road travel and generate huge benefits to travelers and businesses, but to also benefit the entire economy by reducing congestion and virtually eliminating vehicle accidents. The impacts of autonomous vehicles on land use, employment, and public finance are likely to be mixed. But widely assumed negative effects are generally overstated because they ignore plausible adjustments by the public and policymakers that could ameliorate them. This book by two transportation experts argues that policy analysts can play an important and constructive role in identifying and analyzing important policy issues and necessary steps to ease the advent of autonomous vehicles. Among the actions that governments must take are creating a framework for vehicle testing, making appropriate investments in the technology of highway networks to facilitate communication involving autonomous vehicles, and reforming pricing and investment policies to enable operation of autonomous vehicles to be safe and efficient. The authors argue that policymakers at all levels of government must address these and other issues sooner rather than later. Prompt and effective actions outlined in this book are necessary to ensure that autonomous vehicles will be safe and efficient when the public begins to adopt them as replacements for current vehicles.
Autonomous Vehicles: Technologies, Regulations, and Societal Impacts explores both the autonomous driving concepts and the key hardware and software enablers, Artificial intelligence tools, needed infrastructure, communication protocols, and interaction with non-autonomous vehicles. It analyses the impacts of autonomous driving using a scenario-based approach to quantify the effects on the overall economy and affected sectors. The book assess from a qualitative and quantitative approach, the future of autonomous driving, and the main drivers, challenges, and barriers. The book investigates whether individuals are ready to use advanced automated driving vehicles technology, and to what extent we as a society are prepared to accept highly automated vehicles on the road. Building on the technologies, opportunities, strengths, threats, and weaknesses, Autonomous Vehicles: Technologies, Regulations, and Societal Impacts discusses the needed frameworks for automated vehicles to move inside and around cities. The book concludes with a discussion on what in applications comes next, outlining the future research needs. - Broad, interdisciplinary and systematic coverage of the key issues in autonomous driving and vehicles - Examines technological impact on society, governance, and the economy as a whole - Includes foundational topical coverage, case studies, objectives, and glossary
This book aims to teach the core concepts that make Self-driving vehicles (SDVs) possible. It is aimed at people who want to get their teeth into self-driving vehicle technology, by providing genuine technical insights where other books just skim the surface. The book tackles everything from sensors and perception to functional safety and cybersecurity. It also passes on some practical know-how and discusses concrete SDV applications, along with a discussion of where this technology is heading. It will serve as a good starting point for software developers or professional engineers who are eager to pursue a career in this exciting field and want to learn more about the basics of SDV algorithms. Likewise, academic researchers, technology enthusiasts, and journalists will also find the book useful. Key Features: Offers a comprehensive technological walk-through of what really matters in SDV development: from hardware, software, to functional safety and cybersecurity Written by an active practitioner with extensive experience in series development and research in the fields of Advanced Driver Assistance Systems (ADAS) and Autonomous Driving Covers theoretical fundamentals of state-of-the-art SLAM, multi-sensor data fusion, and other SDV algorithms. Includes practical information and hands-on material with Robot Operating System (ROS) and Open Source Car Control (OSCC). Provides an overview of the strategies, trends, and applications which companies are pursuing in this field at present as well as other technical insights from the industry.
When human drivers let intelligent software take the wheel: the beginning of a new era in personal mobility.