Download Free Agricultural Robotics Book in PDF and EPUB Free Download. You can read online Agricultural Robotics and write the review.

Over the past century, mechanization has been an important means for optimizing resource utilization, improving worker health and safety and reducing labor requirements in farming while increasing productivity and quality of 4F (Food, Fuel, Fiber, Feed). Recognizing this contribution, agricultural mechanization was considered as one of the top ten engineering achievements of 20th century by the National Academy of Engineering. Accordingly farming communities have adopted increasing level of automation and robotics to further improve the precision management of crops (including input resources), increase productivity and reduce farm labor beyond what has been possible with conventional mechanization technologies. It is more important than ever to continue to develop and adopt novel automation and robotic solutions into farming so that some of the most complex agricultural tasks, which require huge amount of seasonal labor such as fruit and vegetable harvesting, could be automated while meeting the rapidly increasing need for 4F. In addition, continual innovation in and adoption of agricultural automation and robotic technologies is essential to minimize the use of depleting resources including water, minerals and other chemicals so that sufficient amount of safe and healthy food can be produced for current generation while not compromising the potential for the future generation. This book aims at presenting the fundamental principles of various aspects of automation and robotics as they relate to production agriculture (the branch of agriculture dealing with farming operations from field preparation to seeding, to harvesting and field logistics). The building blocks of agricultural automation and robotics that are discussed in the book include sensing and machine vision, control, guidance, manipulation and end-effector technologies. The fundamentals and operating principles of these technologies are explained with examples from cutting-edge research and development currently going on around the word. This book brings together scientists, engineers, students and professionals working in these and related technologies to present their latest examples of agricultural automation and robotics research, innovation and development while explaining the fundamentals of the technology. The book, therefore, benefits those who wish to develop novel agricultural engineering solutions and/or to adopt them in the future. .
This book provides a review of the state-of-the-art of agricultural robotics in different aspects of PA, the goals, and the gaps. The book introduces the area of Agricultural Robotics for Precision Agriculture (PA) specifically the conditions and limitations for implementing robots in this field and presents the concepts, principles, required abilities, components, characteristics and performance measures, conditions, and rules for robots in PA.
The history of Japan's agriculture is characterized by efforts to increase production and productivity. At the beginning of the 21st century, both public and private sector research has focused on developing ever-more sophisticated tools to address a wide-range of challenges facing the agricultural industry. An amazing array of automation technologies and robots have been developed in the process, to do everything from tilling fields to picking strawberries, from planting rice seedlings to autonomously weeding the paddies. This richly-illustrated volume surveys the results of these efforts, concisely and plainly presenting specific examples of the latest robotic mechanisms and practices for agricultural applications.
Over the past few decades, extensive research has been conducted on the applications of agricultural robots and automation to a variety of field and greenhouse operations, and technical fundamentals and their feasibility have also been widely demonstrated. Due to the unstructured environment, adverse interference and complicated and diversified operation process are the key of blocking its commercialization in robotic agricultural operations. Because of the development of automation techniques, smart sensors, and information techniques, some types of agricultural robots have achieved considerable success in recent years. This book intends to provide the reader with a comprehensive overview of the current state of the art in agricultural robots, fundamentals, and applications in robotic agricultural operations.
Robotics has great potential in improving productivity and precision in agriculture. The book reviews advances in technologies such as machine vision and control systems, as well as applications from crop planting, fertilisation, pest and weed management to livestock production.
The aim of the book is to introduce the state-of-the-art technologies in the field of robotics, mechatronics and automation in agriculture in order to summarize and review the improvements in the methodologies in agricultural robotics. Advances made in the past decades are described, including robotics for agriculture, mechatronics for agriculture, kinematics, dynamics and control analysis of agricultural robotics, and a wide range of topics in the field of robotics, mechatronics and automation for agricultural applications.
Problems of joint application of heterogeneous ground and air robotic means while performing the agricultural technological tasks that require physical interaction with agricultural products and the environment are discussed in the book. Proposed solutions for the exchange of energy and physical resources of unmanned aerial vehicles on ground service platforms, automation of the process of collecting agricultural products and ensuring the stability of the air manipulation system at physical interaction with a ground object are important for the transport and agricultural industry robotization. The book addresses the researchers investigating interdisciplinary issues of agricultural production robotization, problems of information, physical and energy interaction of ground and air robots; recommended to postgraduates and students studying "Mechatronics and robotics" and "Technologies, mechanization and power equipment in agriculture, forestry and fisheries."
This book covers three main types of agricultural systems: the use of robotics, drones (unmanned aerial vehicles), and satellite-guided precision farming methods. Some of these are well refined and are currently in use, while others are in need of refinement and are yet to become popular. The book provides a valuable source of information on this developing field for those involved with agriculture and farming and agricultural engineering. The book is also applicable as a textbook for students and a reference for faculty.
This book is a collection of papers presented at XIV International Scientific Conference “INTERAGROMASH 2021”, held at Don State Technical University, Rostov-on-Don, Russia, during 24–26 February 2021. The research results presented in this book cover applications of unmanned aerial systems, satellite-based applications for precision agriculture, proximal and remote sensing of soil and crop, spatial analysis, variable-rate technology, embedded sensing systems, drainage optimization and variable rate irrigation, wireless sensor networks, Internet of things, robotics, guidance and automation, software and mobile apps for precision agriculture, decision support for precision agriculture and data mining for precision agriculture.
This important volume provides a plethora of information on aerial vehicles and their possible roles in revolutionizing agricultural procedures through spectral analysis of terrains, soils, crops, water resources, diseases, floods, drought, and farm activities. There are several semi-autonomous and autonomous (robotic) aerial vehicles that are examined for their efficiency in offering detailed spectral data about agrarian regions and individual farms. Among them, small drone aircrafts such as fixed-winged and copter models have already caught the imagination of farmers. They are spreading fast in every nook and corner of the farm world. However, there are many more aerial robots that are utilized in greater detail during farming. In this volume, the focus is on aerial vehicles such as parafoils, blimps, aerostats, and kites, and how they are being evaluated for use in experimental farms and fields. A few aerial vehicles, such as robotic parafoils, have been adopted to procure aerial spectral data and visual imagery to aid agronomic procedures. These and other aerial robots are expected to change and improve the use of the sky in agricultural endeavors and the way we conduct agronomic procedures in the very near future. This volume is a timely resource for agricultural researchers, professors and students, and the general public who are interested in aerial vehicles.