Download Free Agricultural Practices And Policies For Carbon Sequestration In Soil Book in PDF and EPUB Free Download. You can read online Agricultural Practices And Policies For Carbon Sequestration In Soil and write the review.

The potential to mitigate greenhouse gas emissions and global climate change is one factor driving agricultural policy development of programs that might pay farmers for practices with a high potential to sequester carbon. With chapters by economists, policy makers, farmers, land managers, energy company representatives, and soil scientists, Agricu
A comprehensive book on basic processes of soil C dynamics and the underlying factors and causes which determine the technical and economic potential of soil C sequestration. The book provides information on the dynamics of both inorganic (lithogenic and pedogenic carbonates) and organic C (labile, intermediate and passive). It describes different types of agroecosystems, and lists questions at the end of each chapter to stimulate thinking and promote academic dialogue. Each chapter has a bibliography containing up-to-date references on the current research, and provides the state-of-the-knowledge while also identifying the knowledge gaps for future research. The critical need for restoring C stocks in world soils is discussed in terms of provisioning of essential ecosystem services (food security, carbon sequestration, water quality and renewability, and biodiversity). It is of interest to students, scientists, and policy makers.
This edited book discusses how effective soil carbon management plans and policies will ultimately make agriculture more secure against climate change and soil degradation. It is focused on initiatives to enhance soil organic carbon (SOC) and sequestration by launching different schemes and programs. An approach based on practical aspects of managing SOC in agriculture is provided with clear and concise descriptions. It has more attention to successfully implement plans and policies to meet the required level of SOC restoration. The book is covering the urgent needs of plans and policies for soil management and C restoration in agricultural ecosystems which can be beneficial to food, nutrition, environment, and economy security. There is also providing a roadmap on SOC policies to encourage the use of best management practices (BMPs) for soil health and C stock restoration, and achieve the Sustainable Development Goals of the United Nations. The book is suitable for teachers, researchers, government planners and policymakers, undergraduate and graduate students of soil science, soil microbiology, agronomy, ecology, and environmental sciences.
Soil Carbon Storage: Modulators, Mechanisms and Modeling takes a novel approach to the issue of soil carbon storage by considering soil C sequestration as a function of the interaction between biotic (e.g. microbes and plants) and abiotic (climate, soil types, management practices) modulators as a key driver of soil C. These modulators are central to C balance through their processing of C from both plant inputs and native soil organic matter. This book considers this concept in the light of state-of-the-art methodologies that elucidate these interactions and increase our understanding of a vitally important, but poorly characterized component of the global C cycle. The book provides soil scientists with a comprehensive, mechanistic, quantitative and predictive understanding of soil carbon storage. It presents a new framework that can be included in predictive models and management practices for better prediction and enhanced C storage in soils. Identifies management practices to enhance storage of soil C under different agro-ecosystems, soil types and climatic conditions Provides novel conceptual frameworks of biotic (especially microbial) and abiotic data to improve prediction of simulation model at plot to global scale Advances the conceptual framework needed to support robust predictive models and sustainable land management practices
With carbon farming, agriculture ceases to be part of the climate problem and becomes a critical part of the solution "This book is the toolkit for making the soil itself a sponge for carbon. It’s a powerful vision."—Bill McKibben "The Carbon Farming Solution is a book we will look back upon decades from now and wonder why something so critically relevant could have been so overlooked until that time. . . . [It] describes the foundation of the future of civilization."—Paul Hawken In this groundbreaking book, Eric Toensmeier argues that agriculture—specifically, the subset of practices known as "carbon farming"—can, and should be, a linchpin of a global climate solutions platform. Carbon farming is a suite of agricultural practices and crops that sequester carbon in the soil and in above-ground biomass. Combined with a massive reduction in fossil fuel emissions—and in concert with adaptation strategies to our changing environment— carbon farming has the potential to bring us back from the brink of disaster and return our atmosphere to the "magic number" of 350 parts per million of carbon dioxide. Toensmeier’s book is the first to bring together these powerful strategies in one place. Includes in-depth analysis of the available research. Carbon farming can take many forms. The simplest practices involve modifications to annual crop production. Although many of these modifications have relatively low sequestration potential, they are widely applicable and easily adopted, and thus have excellent potential to mitigate climate change if practiced on a global scale. Likewise, grazing systems such as silvopasture are easily replicable, don’t require significant changes to human diet, and—given the amount of agricultural land worldwide that is devoted to pasture—can be important strategies in the carbon farming arsenal. But by far, agroforestry practices and perennial crops present the best opportunities for sequestration. While many of these systems are challenging to establish and manage, and would require us to change our diets to new and largely unfamiliar perennial crops, they also offer huge potential that has been almost entirely ignored by climate crusaders. Many of these carbon farming practices are already implemented globally on a scale of millions of hectares. These are not minor or marginal efforts, but win-win solutions that provide food, fodder, and feedstocks while fostering community self-reliance, creating jobs, protecting biodiversity, and repairing degraded land—all while sequestering carbon, reducing emissions, and ultimately contributing to a climate that will remain amenable to human civilization. Just as importantly to a livable future, these crops and practices can contribute to broader social goals such as women’s empowerment, food sovereignty, and climate justice. The Carbon Farming Solution is—at its root—a toolkit and the most complete collection of climate-friendly crops and practices currently available. With this toolkit, farmers, communities, and governments large and small, can successfully launch carbon farming projects with the most appropriate crops and practices to their climate, locale, and socioeconomic needs. Toensmeier’s ultimate goal is to place carbon farming firmly in the center of the climate solutions platform, alongside clean solar and wind energy. With The Carbon Farming Solution, Toensmeier wants to change the discussion, impact policy decisions, and steer mitigation funds to the research, projects, and people around the world who envision a future where agriculture becomes the protagonist in this fraught, urgent, and unprecedented drama of our time. Citizens, farmers, and funders will be inspired to use the tools presented in this important book to transform degraded lands around the world into productive carbon-storing landscapes.
This report assesses the potential of U.S. cropland to sequester carbon, concluding that properly applied soil restorative processes and best management practices can help mitigate the greenhouse effect by decreasing the emissions of greenhouse gases from U.S. agricultural activities and by making U.S. cropland a major sink for carbon sequestration. Topics include: Describe the greenhouse processes and global tends in emissions as well as the three principal components of anthropogenic global warming potential Present data on U.S. emissions and agriculture's related role Examines the soil organic carbon (SOC) pool in soils of the U.S. and its loss due to cultivation Provides a reference for the magnitude of carbon sequestration potential Analyzes the primary processes governing greenhouse gas emission from the pedosphere Establishes a link between SOC content and soil quality Outlines strategies for mitigating emissions from U.S. cropland Discusses soil erosion management Assesses the potential of using cropland to create biomass for direct fuel to produce power Details the potential for sequestering carbon by intensifying prime agricultural land The Potential of U.S. Cropland to Sequester Carbon and Mitigate the Greenhouse Effect provides an exceptional framework for the adoption of science-based management methods on U.S. cropland, encouraging appropriate agricultural practices for the sustainable use of our natural resources and the improvement of our nation's environment.
This book addresses the importance of soil processes in the global carbon cycle.Agricultural activities considered responsible for an increase in CO2 levels in our atmosphere include: deforestation, biomass burning, tillage and intensive cultivation, and drainage of wetlands.However, agriculture can also be a solution to the problem in which carbon can be removed from the atmosphere and permanently sequestered into the soil. Management of Carbon Sequestration in Soil highlights the importance of world soils as a sink for atmospheric carbon and discusses the impact of tillage, conservation reserve programs (CRP), management of grasslands and woodlands, and other soil and crop management and land use practices that lead to carbon sequestration.
Soil carbon sequestration and preservation of present stocks reduces net global greenhouse gas emission and can contribute significantly to both Nordic and international goals of limiting serious climate change. In order to achieve this, sustainable use of soil resources, better soil and water management practices, and restoration of degraded soils is needed. Protection and restoration of soil organic carbon are also key solutions to many of the most pressing global challenges facing mankind today. Highlighting the importance of the soil and the multiple benefits of soil organic carbon sequestration has never been more needed than now.
This book is divided in two sections. Several chapters in the first section provide a state-of-the-art review of various carbon sinks for CO2 sequestration such as soil and oceans. Other chapters discuss the carbon sequestration achieved by storage in kerogen nanopores, CO2 miscible flooding and generation of energy efficient solvents for postcombustion CO2 capture. The chapters in the second section focus on monitoring and tracking of CO2 migration in various types of storage sites, as well as important physical parameters relevant to sequestration. Both researchers and students should find the material useful in their work.
The signals are everywhere that our planet is experiencing significant climate change. It is clear that we need to reduce the emissions of carbon dioxide and other greenhouse gases from our atmosphere if we want to avoid greatly increased risk of damage from climate change. Aggressively pursuing a program of emissions abatement or mitigation will show results over a timescale of many decades. How do we actively remove carbon dioxide from the atmosphere to make a bigger difference more quickly? As one of a two-book report, this volume of Climate Intervention discusses CDR, the carbon dioxide removal of greenhouse gas emissions from the atmosphere and sequestration of it in perpetuity. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration introduces possible CDR approaches and then discusses them in depth. Land management practices, such as low-till agriculture, reforestation and afforestation, ocean iron fertilization, and land-and-ocean-based accelerated weathering, could amplify the rates of processes that are already occurring as part of the natural carbon cycle. Other CDR approaches, such as bioenergy with carbon capture and sequestration, direct air capture and sequestration, and traditional carbon capture and sequestration, seek to capture CO2 from the atmosphere and dispose of it by pumping it underground at high pressure. This book looks at the pros and cons of these options and estimates possible rates of removal and total amounts that might be removed via these methods. With whatever portfolio of technologies the transition is achieved, eliminating the carbon dioxide emissions from the global energy and transportation systems will pose an enormous technical, economic, and social challenge that will likely take decades of concerted effort to achieve. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration will help to better understand the potential cost and performance of CDR strategies to inform debate and decision making as we work to stabilize and reduce atmospheric concentrations of carbon dioxide.