Download Free Agent Based Computational Sociology Book in PDF and EPUB Free Download. You can read online Agent Based Computational Sociology and write the review.

Aimed at readers with minimal experience in computer programming, this brief book provides a theoretical and methodological rationale for using ABM in the social sciences. It goes on to describe some carefully chosen examples from different disciplines, illustrating different approaches to ABM. It concludes with practical advice about how to design and create ABM, a discussion of validation procedures, and some guidelines about publishing articles based on ABM.
Agent-based computational modeling is changing the face of social science. In Generative Social Science, Joshua Epstein argues that this powerful, novel technique permits the social sciences to meet a fundamentally new standard of explanation, in which one "grows" the phenomenon of interest in an artificial society of interacting agents: heterogeneous, boundedly rational actors, represented as mathematical or software objects. After elaborating this notion of generative explanation in a pair of overarching foundational chapters, Epstein illustrates it with examples chosen from such far-flung fields as archaeology, civil conflict, the evolution of norms, epidemiology, retirement economics, spatial games, and organizational adaptation. In elegant chapter preludes, he explains how these widely diverse modeling studies support his sweeping case for generative explanation. This book represents a powerful consolidation of Epstein's interdisciplinary research activities in the decade since the publication of his and Robert Axtell's landmark volume, Growing Artificial Societies. Beautifully illustrated, Generative Social Science includes a CD that contains animated movies of core model runs, and programs allowing users to easily change assumptions and explore models, making it an invaluable text for courses in modeling at all levels.
Explore the issue of causal inference in agent-based computational models in a first-of-it’s-kind volume Agent-based Models and Causal Inference delivers an insightful investigation into the conditions under which different quantitative methods can legitimately hold to be able to establish causal claims. The book compares agent-based computational methods with randomized experiments, instrumental variables, and various types of causal graphs. It goes on to explain why there is no strong argument to believe that observational and experimental methods are qualitatively superior to simulation-based methods in their capacity to contribute to establishing causal claims. Organized in two parts, Agent-based Models and Causal Inference connects the literature from various fields, including causality, social mechanisms, statistical and experimental methods for causal inference, and agent-based computation models to help show that causality means different things within different methods for causal analysis, and that persuasive causal claims can only be built at the intersection of these various methods. Readers will also benefit from the inclusion of: A thorough comparison between agent-based computation models to randomized experiments, instrumental variables, and several types of causal graphs. A compelling argument that observational and experimental methods are not qualitatively superior to simulation-based methods in their ability to establish causal claims Practical discussions of how statistical, experimental and computational methods can be combined to produce reliable causal inferences Perfect for academic social scientists and scholars in the fields of computational social science, philosophy, statistics, experimental design, and ecology, Agent-based Models and Causal Inference will also earn a place in the libraries of PhD students seeking a one-stop reference on the issue of causal inference in agent-based computational models.
The present book describes the methodology to set up agent-based models and to study emerging patterns in complex adaptive systems resulting from multi-agent interaction. It offers the application of agent-based models in demography, social and economic sciences and environmental sciences. Examples include population dynamics, evolution of social norms, communication structures, patterns in eco-systems and socio-biology, natural resource management, spread of diseases and development processes. It presents and combines different approaches how to implement agent-based computational models and tools in an integrative manner that can be extended to other cases.
Agent-Based Computational Demography (ABCD) aims at starting a new stream of research among social scientists whose interests lie in understanding demographic behaviour. The book takes a micro-demographic (agent-based) perspective and illustrates the potentialities of computer simulation as an aid in theory building. The chapters of the book, written by leading experts either in demography or in agent-based modelling, address several key questions. Why do we need agent-based computational demography? How can ABCD be applied to the study of migrations, family demography, and historical demography? What are the peculiarities of agent-based models as applied to the demography of human populations? ABCD is of interest to all scientists interested in studying demographic behaviour, as well as to computer scientists and modellers who are looking for a promising field of application.
This reader-friendly textbook is the first work of its kind to provide a unified Introduction to Computational Social Science (CSS). Four distinct methodological approaches are examined in detail, namely automated social information extraction, social network analysis, social complexity theory and social simulation modeling. The coverage of these approaches is supported by a discussion of the historical context, as well as by a list of texts for further reading. Features: highlights the main theories of the CSS paradigm as causal explanatory frameworks that shed new light on the nature of human and social dynamics; explains how to distinguish and analyze the different levels of analysis of social complexity using computational approaches; discusses a number of methodological tools; presents the main classes of entities, objects and relations common to the computational analysis of social complexity; examines the interdisciplinary integration of knowledge in the context of social phenomena.
Most of the intriguing social phenomena of our time, such as international terrorism, social inequality, and urban ethnic segregation, are consequences of complex forms of agent interaction that are difficult to observe methodically and experimentally. This book looks at a new research stream that makes use of advanced computer simulation modelling techniques to spotlight agent interaction that allows us to explain the emergence of social patterns. It presents a method to pursue analytical sociology investigations that look at relevant social mechanisms in various empirical situations, such as markets, urban cities, and organisations. This book: Provides a comprehensive introduction to epistemological, theoretical and methodological features of agent-based modelling in sociology through various discussions and examples. Presents the pros and cons of using agent-based models in sociology. Explores agent-based models in combining quantitative and qualitative aspects, and micro- and macro levels of analysis. Looks at how to pose an agent-based research question, identifying the model building blocks, and how to validate simulation results. Features examples of agent-based models that look at crucial sociology issues. Supported by an accompanying website featuring data sets and code for the models included in the book. Agent-Based Computational Sociology is written in a common sociological language and features examples of models that look at all the traditional explanatory challenges of sociology. Researchers and graduate students involved in the field of agent-based modelling and computer simulation in areas such as social sciences, cognitive sciences and computer sciences will benefit from this book.
This volume shows that the emergence of computational social science (CSS) is an endogenous response to problems from within the social sciences and not exogeneous. The three parts of the volume address various pathways along which CSS has been developing from and interacting with existing research frameworks. The first part exemplifies how new theoretical models and approaches on which CSS research is based arise from theories of social science. The second part is about methodological advances facilitated by CSS-related techniques. The third part illustrates the contribution of CSS to traditional social science topics, further attesting to the embedded nature of CSS. The expected readership of the volume includes researchers with a traditional social science background who wish to approach CSS, experts in CSS looking for substantive links to more traditional social science theories, methods and topics, and finally, students working in both fields.
This book constitutes the refereed proceedings of the First International Conference on Computer Science, Engineering and Information Technology, CCSEIT 2011, held in Tirunelveli, India, in September 2011. The 73 revised full papers were carefully reviewed and selected from more than 400 initial submissions. The papers feature significant contributions to all major fields of the Computer Science and Information Technology in theoretical and practical aspects.
Agent-based simulation has become increasingly popular as a modeling approach in the social sciences because it enables researchers to build models where individual entities and their interactions are directly represented. The Second Edition of Nigel Gilbert's Agent-Based Models introduces this technique; considers a range of methodological and theoretical issues; shows how to design an agent-based model, with a simple example; offers some practical advice about developing, verifying and validating agent-based models; and finally discusses how to plan an agent-based modelling project, publish the results and apply agent-based modeling to formulate and evaluate social and economic policies. An accompanying simulation using NetLogo and commentary on the program can be downloaded on the book's website: https://study.sagepub.com/researchmethods/qass/gilbert-agent-based-models-2e.