Download Free Age Dependent Population Dynamics Book in PDF and EPUB Free Download. You can read online Age Dependent Population Dynamics and write the review.

This volume is devoted to some of the most biologically significant control problems governed by continuous age-dependent population dynamics. It investigates the existence, uniqueness, positivity, and asymptotic behaviour of the solutions of the continuous age-structured models. Some comparison results are also established. In the optimal control problems the emphasis is on first order necessary conditions of optimality. These conditions allow the determination of the optimal control or the approximation of the optimal control problem. The exact controllability for some models with diffusion and internal control is also studied. These subjects are treated using new concepts and techniques of modern optimal control theory, such as Clarke's generalized gradient, Ekeland's variational principle, Hamilton-Jacobi equations, and Carleman estimates. A background in advanced calculus and partial differential equations is required. Audience: This work will be of interest to students in mathematics, biology, and engineering, and researchers in applied mathematics, control theory, and biology.
The material of the present book is an extension of a graduate course given by the author at the University "Al.I. Cuza" Iasi and is intended for stu dents and researchers interested in the applications of optimal control and in mathematical biology. Age is one of the most important parameters in the evolution of a bi ological population. Even if for a very long period age structure has been considered only in demography, nowadays it is fundamental in epidemiology and ecology too. This is the first book devoted to the control of continuous age structured populationdynamics.It focuses on the basic properties ofthe solutions and on the control of age structured population dynamics with or without diffusion. The main goal of this work is to familiarize the reader with the most important problems, approaches and results in the mathematical theory of age-dependent models. Special attention is given to optimal harvesting and to exact controllability problems, which are very important from the econom ical or ecological points of view. We use some new concepts and techniques in modern control theory such as Clarke's generalized gradient, Ekeland's variational principle, and Carleman estimates. The methods and techniques we use can be applied to other control problems.
This book provides an introduction to age-structured population modeling which emphasizes the connection between mathematical theory and underlying biological assumptions. Through the rigorous development of the linear theory and the nonlinear theory alongside numerics, the authors explore classical equations that describe the dynamics of certain ecological systems. Modeling aspects are discussed to show how relevant problems in the fields of demography, ecology and epidemiology can be formulated and treated within the theory. In particular, the book presents extensions of age-structured modeling to the spread of diseases and epidemics while also addressing the issue of regularity of solutions, the asymptotic behavior of solutions, and numerical approximation. With sections on transmission models, non-autonomous models and global dynamics, this book fills a gap in the literature on theoretical population dynamics. The Basic Approach to Age-Structured Population Dynamics will appeal to graduate students and researchers in mathematical biology, epidemiology and demography who are interested in the systematic presentation of relevant models and mathematical methods.
This book is the first one in which basic demographic models are rigorously formulated by using modern age-structured population dynamics, extended to study real-world population problems. Age structure is a crucial factor in understanding population phenomena, and the essential ideas in demography and epidemiology cannot be understood without mathematical formulation; therefore, this book gives readers a robust mathematical introduction to human population studies. In the first part of the volume, classical demographic models such as the stable population model and its linear extensions, density-dependent nonlinear models, and pair-formation models are formulated by the McKendrick partial differential equation and are analyzed from a dynamical system point of view. In the second part, mathematical models for infectious diseases spreading at the population level are examined by using nonlinear differential equations and a renewal equation. Since an epidemic can be seen as a nonlinear renewal process of an infected population, this book will provide a natural unification point of view for demography and epidemiology. The well-known epidemic threshold principle is formulated by the basic reproduction number, which is also a most important key index in demography. The author develops a universal theory of the basic reproduction number in heterogeneous environments. By introducing the host age structure, epidemic models are developed into more realistic demographic formulations, which are essentially needed to attack urgent epidemiological control problems in the real world.
There isprobably no more appropriate location to hold a course on mathematical ecology than Italy, the countryofVito Volterra, a founding father ofthe subject. The Trieste 1982Autumn Course on Mathematical Ecology consisted of four weeksofvery concentrated scholasticism and aestheticism. The first weeks were devoted to fundamentals and principles ofmathematicalecology. A nucleusofthe material from the lectures presented during this period constitutes this book. The final week and a half of the Course was apportioned to the Trieste Research Conference on Mathematical Ecology whose proceedings have been published as Volume 54, Lecture Notes in Biomathematics, Springer-Verlag. The objectivesofthe first portionofthe course wereambitious and, probably, unattainable. Basic principles of the areas of physiological, population, com munitY, and ecosystem ecology that have solid ecological and mathematical foundations were to be presented. Classical terminology was to be introduced, important fundamental topics were to be developed, some past and some current problems of interest were to be presented, and directions for possible research were to be provided. Due to time constraints, the coverage could not be encyclopedic;many areas covered already have merited treatises of book length. Consequently, preliminary foundation material was covered in some detail, but subject overviewsand area syntheseswerepresented when research frontiers were being discussed. These lecture notes reflect this course philosophy.
Interest in the temporal fluctuations of biological populations can be traced to the dawn of civilization. How can mathematics be used to gain an understanding of population dynamics? This monograph introduces the theory of structured population dynamics and its applications, focusing on the asymptotic dynamics of deterministic models. This theory bridges the gap between the characteristics of individual organisms in a population and the dynamics of the total population as a whole. In this monograph, many applications that illustrate both the theory and a wide variety of biological issues are given, along with an interdisciplinary case study that illustrates the connection of models with the data and the experimental documentation of model predictions. The author also discusses the use of discrete and continuous models and presents a general modeling theory for structured population dynamics. Cushing begins with an obvious point: individuals in biological populations differ with regard to their physical and behavioral characteristics and therefore in the way they interact with their environment. Studying this point effectively requires the use of structured models. Specific examples cited throughout support the valuable use of structured models. Included among these are important applications chosen to illustrate both the mathematical theories and biological problems that have received attention in recent literature.
This book is an outcome of the Second International Conference on Mathematical Population Dynamics. It is intended for mathematicians, statisticians, biologists, and medical researchers who are interested in recent advances in analyzing changes in populations of genes, cells, and tumors.