Download Free Affine Lie Algebras Weight Multiplicity And Branching Rules Book in PDF and EPUB Free Download. You can read online Affine Lie Algebras Weight Multiplicity And Branching Rules and write the review.

00 This practical treatise is an introduction to the mathematics and physics of affine Kac-Moody algebras. It is the result of an unusual interdisciplinary effort by two physicists and two mathematicians to make this field understandable to a broad readership and to illuminate the connections among seemingly disparate domains of mathematics and physics that are tantalizingly suggested by the ubiquity of Lie theory. The book will be useful to Lie algebraists, high energy physicists, statistical mechanics, and number theorists. Volume One contains a description of Kac-Moody Lie algebras, and especially the affine algebras and their representations; the results of extensive computations follow in Volume Two, which is spiral bound for easy reference. This practical treatise is an introduction to the mathematics and physics of affine Kac-Moody algebras. It is the result of an unusual interdisciplinary effort by two physicists and two mathematicians to make this field understandable to a broad readership and to illuminate the connections among seemingly disparate domains of mathematics and physics that are tantalizingly suggested by the ubiquity of Lie theory. The book will be useful to Lie algebraists, high energy physicists, statistical mechanics, and number theorists. Volume One contains a description of Kac-Moody Lie algebras, and especially the affine algebras and their representations; the results of extensive computations follow in Volume Two, which is spiral bound for easy reference.
View the abstract.
(Cartan sub Lie algebra, roots, Weyl group, Dynkin diagram, . . . ) and the classification, as found by Killing and Cartan (the list of all semisimple Lie algebras consists of (1) the special- linear ones, i. e. all matrices (of any fixed dimension) with trace 0, (2) the orthogonal ones, i. e. all skewsymmetric ma trices (of any fixed dimension), (3) the symplectic ones, i. e. all matrices M (of any fixed even dimension) that satisfy M J = - J MT with a certain non-degenerate skewsymmetric matrix J, and (4) five special Lie algebras G2, F , E , E , E , of dimensions 14,52,78,133,248, the "exceptional Lie 4 6 7 s algebras" , that just somehow appear in the process). There is also a discus sion of the compact form and other real forms of a (complex) semisimple Lie algebra, and a section on automorphisms. The third chapter brings the theory of the finite dimensional representations of a semisimple Lie alge bra, with the highest or extreme weight as central notion. The proof for the existence of representations is an ad hoc version of the present standard proof, but avoids explicit use of the Poincare-Birkhoff-Witt theorem. Complete reducibility is proved, as usual, with J. H. C. Whitehead's proof (the first proof, by H. Weyl, was analytical-topological and used the exis tence of a compact form of the group in question). Then come H.
This is an introduction to the theory of affine Lie Algebras, to the theory of quantum groups, and to the interrelationships between these two fields that are encountered in conformal field theory.
This book pays tribute to two pioneers in the field of Mathematical physics, Jiri Patera and Pavel Winternitz of the CRM. Each has contributed more than forty years to the subject of mathematical physics, particularly to the study of algebraic methods.