Download Free Aesthetics Of Interdisciplinarity Art And Mathematics Book in PDF and EPUB Free Download. You can read online Aesthetics Of Interdisciplinarity Art And Mathematics and write the review.

This anthology fosters an interdisciplinary dialogue between the mathematical and artistic approaches in the field where mathematical and artistic thinking and practice merge. The articles included highlight the most significant current ideas and phenomena, providing a multifaceted and extensive snapshot of the field and indicating how interdisciplinary approaches are applied in the research of various cultural and artistic phenomena. The discussions are related, for example, to the fields of aesthetics, anthropology, art history, art theory, artistic practice, cultural studies, ethno-mathematics, geometry, mathematics, new physics, philosophy, physics, study of visual illusions, and symmetry studies. Further, the book introduces a new concept: the interdisciplinary aesthetics of mathematical art, which the editors use to explain the manifold nature of the aesthetic principles intertwined in these discussions.
Interdisciplinarity has become increasingly important for emergent professions of the 21st century yet there is a dearth of systematic studies aimed at implementing it in the school and university curricula. The Mathematics and its Connections to the Arts and Sciences (MACAS ) group places Mathematics as a vehicle through which deep and meaningful connections can be forged with the Arts and the Sciences and as a means of promoting interdisciplinary and transdisciplinary thinking traits amongst students. The Third International Symposium held by the MACAS group in Moncton, Canada in 2009 included numerous initiatives and ideas for interdisciplinarity that are implementable in both the school and university setting. The chapters in this book cover interdisciplinary links with mathematics found in the domains of culture, art, aesthetics, music, cognition, history, philosophy, engineering, technology and science with contributors from Canada, U.S, Denmark, Germany, Mexico, Iran and Poland amongst others.
This edited monograph provides a compelling analysis of the interplay between neuroscience and aesthetics. The book broaches a wide spectrum of topics including, but not limited to, mathematics and creator algorithms, neurosciences of artistic creativity, paintings and dynamical systems as well as computational research for architecture. The international authorship is genuinely interdisciplinary and the target audience primarily comprises readers interested in transdisciplinary research between neuroscience and the broad field of aesthetics.
This book celebrates the 15th anniversary of the bi-annual symposium series Mathematics and its Connections to the Arts and Sciences (MACAS), which was first held in 2005 following the continued collaboration of an international group of researchers from ICME Topic Study Group 21. The MACAS-conferences bring together scientists and educators who are interested in the connection between mathematics, arts and science in educational curriculum, while emphasizing on, as well as researching about, the role of mathematics. By pooling together these different approaches and viewpoints between mathematics, arts and sciences, this book reveals possible synergies and paths for collaborations. In view of the challenges of the 21st century, a modern approach to education with a focus on multi- and interdisciplinarity is more important than ever. The role of mathematics assumes a key role in this approach as it is connected to all other disciplines, such as STEM education, physics, chemistry, biology, aesthetics and language, and can serve as a bridge between them. This book discusses, amongst others, the curricular approaches to integrate mathematics and other disciplines, the importance of mathematical modelling and the interdisciplinarity ways for learning and studying of mathematics, as well as the intercultural dimensions of mathematics and mathematics in the digital era. All topics will be presented from very different perspectives and regarding very different contexts, including digitization, culture and sustainability. This unique collection will serve as a very valuable and compact source for all above mentioned scientists and educators, as well as for use in advanced teacher education courses.
Art and science are not separate universes. This book explores this claim by showing how mathematics, geometry and numerical approaches contribute to the construction of works of art. This applies not only to modern visual artists but also to important artists of the past. To illustrate this, this book studies Leonardo da Vinci, who was both an engineer and a painter, and whose paintings can be perfectly modeled using simple geometric curves. The world gains intelligibility through elegant mathematical frameworks – from the projective spaces of painting to the most complex phase spaces of theoretical physics. A living example of this interdisciplinarity would be the sculptures of Jean Letourneur, a specialist in both chaos sciences and carving, as evidenced in his stonework. This book also exemplifies the geometry and life of forms through contemporary works of art – including fractal art – which have never before been represented in this type of work.
This book is meant to serve either as a textbook for an interdisciplinary course in Mathematics of Design, or as a trade book for designers. It will also be of interest for people interested in recreational mathematics showing the connection between mathematics and design. Topics from the book can also be adapted for use in pre-college mathematics. Each chapter will provide the user with ideas that can be incorporated in a design. Background materials will be provided to show the reader the mathematical principles that lie behind the designs.
Einstein once remarked "After a certain high level of technical skill is achieved, science and art tend to coalesce in aesthetics, plasticity, and form. The greatest scientists are always artists as well". In this volume, some of the world’s leading thinkers come together to expound on the interrelations between sciences and arts. While one can segregate art and place it outside the scientific realm, it is, nevertheless, inextricably linked to our essential cognitive/emotional/perceptual modalities and abilities, and therefore lies alongside and in close contact with the method of science and philosophy. What inspiration can scientists draw from art and how can scientific spirit foster our understanding and creation of aesthetic works? How are art and science grounded in our cognition? What role does perception play in science and art? Are criteria for beauty in art and science the same? How does evolution shape our understanding of art? How do science, art and scientifico-artistic frameworks shape society as a whole and help us address its pressing issues? The epistemological and ontological aspects haunt artists, philosophers and scientists alike. The essays in this volume address these manifold questions while also elucidating the pragmatic role they play in our daily life.
The book is based on the recently held Symposium on mathematics and its connections to the arts and sciences, namely the second Mathematics and its Connections to the Arts and Sciences (MACAS2)Symposium in Odense, Denmark (May 29-31, 2007). The chapters are an eclectic collection of interdisciplinary research initiatives undertaken by mathematics educators with implications for practitioners concerned with teaching and learning processes. The papers cover a wide genre of research domains within mathematics education (cognition, modelling, problem solving, teacher education, ethnomathematics, mathematical/statistical literacy, curricular and technological initiatives and research related to science education). The major interdisciplinary themes of the papers in this book are: 1. How can modelling activities be used to foster interdisciplinary projects in the school and university setting? 2. How can the intricate connections between mathematics and physics be used to design and research interdisciplinary activities in schools and the university? 3. How can research within the ethnomathematics domain of mathematics education be linked to critical mathematics education and interdisciplinary projects involving mathematics, art and culture? 4. How can the push for mathematical and statistical literacy be connected to other subjects in the school curricula and emphasized via interdisciplinary activities? 5. What are concrete examples of classroom experiments with empirical data that demonstrate new and unusual connections/relations between mathematics, arts and the sciences with implications for pedagogy? 6. What is the role of technology and new ICT interfaces in linking communities of learners in interdisciplinary activities involving problem solving? The book is an important contribution to the literature on educational initiatives in interdisciplinary education increasing vital for emerging professions of the 21st century.
This collection of essays explores the ancient affinity between the mathematical and the aesthetic, focusing on fundamental connections between these two modes of reasoning and communicating. From historical, philosophical and psychological perspectives, with particular attention to certain mathematical areas such as geometry and analysis, the authors examine ways in which the aesthetic is ever-present in mathematical thinking and contributes to the growth and value of mathematical knowledge.
The Seoul Agenda: Goals for the Development of Arts Education was unanimously endorsed by all UNESCO Member States in 2011. It is the only existent policy paper of global relevance on arts education. It provided the frame of reference for an international inquiry into arts education experts' perceptions of key issues in the field: access and participation, quality, and the benefits of arts education. Nearly 400 experts from 61 countries around the world participated in this research. The book presents findings, commentaries, and reflections contributed by 51 international scholars and expert practitioners.