Download Free Advancing Robust Multi Objective Optimisation Applied To Complex Model Based Water Related Problems Book in PDF and EPUB Free Download. You can read online Advancing Robust Multi Objective Optimisation Applied To Complex Model Based Water Related Problems and write the review.

The exercise of solving engineering problems that require optimisation procedures can be seriously affected by uncertain variables, resulting in potential underperforming solutions. Although this is a well-known problem, important knowledge gaps are still to be addressed. For example, concepts of robustness largely differ from study to study, robust solutions are generally provided with limited information about their uncertainty, and robust optimisation is difficult to apply as it is a computationally demanding task. The proposed research aims to address the mentioned challenges and focuses on robust optimisation of multiple objectives and multiple sources of probabilistically described uncertainty. This is done by the development of the Robust Optimisation and Probabilistic Analysis of Robustness algorithm (ROPAR), which integrates widely accepted robustness metrics into a single flexible framework. In this thesis, ROPAR is not only tested in benchmark functions, but also in engineering problems related to the water sector, in particular the design of urban drainage and water distribution systems. ROPAR allows for employing practically any existing multi-objective optimisation algorithm as its internal optimisation engine, which enables its applicability to other problems as well. Additionally, ROPAR can be straightforwardly parallelized, allowing for fast availability of results.
This book focuses on the most well-regarded and recent nature-inspired algorithms capable of solving optimization problems with multiple objectives. Firstly, it provides preliminaries and essential definitions in multi-objective problems and different paradigms to solve them. It then presents an in-depth explanations of the theory, literature review, and applications of several widely-used algorithms, such as Multi-objective Particle Swarm Optimizer, Multi-Objective Genetic Algorithm and Multi-objective GreyWolf Optimizer Due to the simplicity of the techniques and flexibility, readers from any field of study can employ them for solving multi-objective optimization problem. The book provides the source codes for all the proposed algorithms on a dedicated webpage.
Optimization is considered as a decision-making process for getting the most out of available resources for the best attainable results. Many real-world problems are multi-objective or multi-attribute problems that naturally involve several competing objectives that need to be optimized simultaneously, while respecting some constraints or involving selection among feasible discrete alternatives. In this Reprint of the Special Issue, 19 research papers co-authored by 88 researchers from 14 different countries explore aspects of multi-objective or multi-attribute modeling and optimization in crisp or uncertain environments by suggesting multiple-attribute decision-making (MADM) and multi-objective decision-making (MODM) approaches. The papers elaborate upon the approaches of state-of-the-art case studies in selected areas of applications related to sustainable development decision aiding in engineering and management, including construction, transportation, infrastructure development, production, and organization management.
Recent developments in information processing systems have driven the advancement of computational methods in the engineering realm. New models and simulations enable better solutions for problem-solving and overall process improvement. The Handbook of Research on Advanced Computational Techniques for Simulation-Based Engineering is an authoritative reference work representing the latest scholarly research on the application of computational models to improve the quality of engineering design. Featuring extensive coverage on a range of topics from various engineering disciplines, including, but not limited to, soft computing methods, comparative studies, and hybrid approaches, this book is a comprehensive reference source for students, professional engineers, and researchers interested in the application of computational methods for engineering design.
This book is a printed edition of the Special Issue "Advanced Hydroinformatic Techniques for the Simulation and Analysis of Water Supply and Distribution Systems" that was published in Water
All machining process are dependent on a number of inherent process parameters. It is of the utmost importance to find suitable combinations to all the process parameters so that the desired output response is optimized. While doing so may be nearly impossible or too expensive by carrying out experiments at all possible combinations, it may be done quickly and efficiently by using computational intelligence techniques. Due to the versatile nature of computational intelligence techniques, they can be used at different phases of the machining process design and optimization process. While powerful machine-learning methods like gene expression programming (GEP), artificial neural network (ANN), support vector regression (SVM), and more can be used at an early phase of the design and optimization process to act as predictive models for the actual experiments, other metaheuristics-based methods like cuckoo search, ant colony optimization, particle swarm optimization, and others can be used to optimize these predictive models to find the optimal process parameter combination. These machining and optimization processes are the future of manufacturing. Data-Driven Optimization of Manufacturing Processes contains the latest research on the application of state-of-the-art computational intelligence techniques from both predictive modeling and optimization viewpoint in both soft computing approaches and machining processes. The chapters provide solutions applicable to machining or manufacturing process problems and for optimizing the problems involved in other areas of mechanical, civil, and electrical engineering, making it a valuable reference tool. This book is addressed to engineers, scientists, practitioners, stakeholders, researchers, academicians, and students interested in the potential of recently developed powerful computational intelligence techniques towards improving the performance of machining processes.
This proceedings book focuses on innovation, cooperation, and sustainable development in the fields of construction management and real estate. The book provides a detailed analysis and description of the disciplinary frontiers in the field of building management and real estate and how they can be promoted in the context of the epidemic. A wide variety of papers provide a reference value for both scholars and practitioners. The proceedings book is the documentation of “the 25th International Symposium on Advancement of Construction Management and Real Estate” (CRIOCM 2020), which was held at the School of Public Administration, Central China Normal University, Wuhan, China, in 2020.
A considerable amount of scientific evidence has been collected leading to the conclusion that urban wastewater components should be designed as one integrated system, in order to protect the receiving waters cost-effectively. Moreover, there is a need to optimize the design and operation of the sewerage network and wastewater treatment plant (WwTP) considering the dynamic interactions between them and the receiving waters. This book introduces a method called Model Based Design and Control (MoDeCo) for the optimum design and control of urban wastewater components. The book presents a detailed description of the integration of modelling tools for the sewer, the wastewater treatment plants and the rivers. The complex modelling structure used for the integrated model challenge previous applications of integrated modelling approaches presented in scientific literature. The combination of modelling tools and multi-objective evolutionary algorithms demonstrated in this book represent an excellent tool for designers and managers of urban wastewater infrastructure. This book also presents two alternatives to solve the computing demand of the optimization of integrated systems in practical applications: the use of surrogate modelling tools and the use of cloud computer infrastructure for parallel computing.
Advanced Hydroinformatics Advanced Hydroinformatics Machine Learning and Optimization for Water Resources The rapid development of machine learning brings new possibilities for hydroinformatics research and practice with its ability to handle big data sets, identify patterns and anomalies in data, and provide more accurate forecasts. Advanced Hydroinformatics: Machine Learning and Optimization for Water Resources presents both original research and practical examples that demonstrate how machine learning can advance data analytics, accuracy of modeling and forecasting, and knowledge discovery for better water management. Volume Highlights Include: Overview of the application of artificial intelligence and machine learning techniques in hydroinformatics Advances in modeling hydrological systems Different data analysis methods and models for forecasting water resources New areas of knowledge discovery and optimization based on using machine learning techniques Case studies from North America, South America, the Caribbean, Europe, and Asia The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.