Download Free Advances In Toxicology And Risk Assessment Of Nanomaterials And Emerging Contaminants Book in PDF and EPUB Free Download. You can read online Advances In Toxicology And Risk Assessment Of Nanomaterials And Emerging Contaminants and write the review.

This book details the state-of-the-art methodological advances for delineating the toxicology and working mechanisms of nanomaterials, microplastics, fine aerosol particulates (PM2.5) as well as emerging organic pollutants. It also provides latest computational approaches for toxicity prediction and risk assessment of nanoscale materials which possess realistic chances to enter the environment and human organism. Written by leading scientists at the frontiers of environmental science and nanomedicine, this book is intended for both young researchers and experienced professionals working in the fields of environmental protection, human health and occupational safety, nanotechnology, material science and nanomedicine, as well as graduate students majoring in environmental and health sciences.
The presence of chemicals in our environment is a subject of intense interest owing to the many potential adverse health effects to humans following exposure to these chemicals. The principles and practices of risk assessment are used to assess the associated health risks to provide a scientific and health basis for guidance or regulatory standards
Aquatic Ecotoxicology: Advancing Tools for Dealing with Emerging Risks presents a thorough look at recent advances in aquatic ecotoxicology and their application in assessing the risk of well-known and emerging environmental contaminants. This essential reference, brought together by leading experts in the field, guides users through existing and novel approaches to environmental risk assessment, then presenting recent advances in the field of ecotoxicology, including omics-based technologies, biomarkers, and reference species. The book then demonstrates how these advances can be used to design and perform assays to discover the toxicological endpoints of emerging risks within the aquatic environment, such as nanomaterials, personal care products, PFOS and chemical mixtures. The text is an invaluable reference for any scientist who studies the effects of contaminants on organisms that live within aquatic environments. - Provides the latest perspectives on emerging toxic risks to aquatic environments, such as nanomaterials, pharmaceuticals, chemical mixtures, and perfluorooctane sulfonate (PFOS) - Offers practical guidance on recent advances to help in choosing the most appropriate toxicological assay - Presents case studies and information on a variety of reference species to help put the ecotoxicological theory into practical risk assess
Emerging Contaminants in the Environment: Challenges and Sustainable Practices covers all aspects of emerging contaminants in the environment, from basic understanding to different types of emerging contaminants and how these threaten organisms, their environmental fate studies, detection methods, and sustainable practices of dealing with contaminants. Emerging contaminant remediation is a pressing need due to the ever-increasing pollution in the environment, and it has gained a lot of scientific and public attention due to its high effectiveness and sustainability. The discussions in the book on the bioremediation of these contaminants are covered from the perspective of proven technologies and practices through case studies and real-world data. One of the main benefits of this book is that it summarizes future challenges and sustainable solutions. It can, therefore, become an effective guide to the elimination (through sustainable practices) of emerging contaminants. At the back of these explorations on sustainable bioremediation of emerging contaminants lies the set of 17 goals articulated by the United Nations in its 2030 Agenda for Sustainable Development, adopted by all its member states. This book provides academics, researchers, students, and practitioners interested in the detection and elimination of emerging contaminants from the environment, with the latest advances by leading experts in emerging contaminants the field of environmental sciences. - Covers most aspects of the most predominant emerging contaminants in the environment, including in soil, air, and water - Describes the occurrence of these contaminants, the problems they cause, and the sustainable practices to deal with the contaminants - Includes data from case studies to provide real-world examples of sustainable practices and emerging contaminant remediation
Emerging contaminants include an extensive array of synthetic chemicals in global use, such as plastic additives, microplastics, water disinfection byproducts, pharmaceuticals, man-made nanomaterials, and UV-filters. Because of their extensive use in anthropogenic activities, these chemicals are entering the environment at alarming levels as hazardous wastes and non-biodegradable substances. This book emphasizes on the comprehensive information on emerging contaminants overview, environmental occurrence, analysis, risk assessment and toxicity assessment. Environmental, legal, health concerns of the ECs have also been covered in this book. The book also features an updated status from the industrial point of view.
From the use of personal products to our consumption of food, water, and air, people are exposed to a wide array of agents each day-many with the potential to affect health. Exposure Science in the 21st Century: A Vision and A Strategy investigates the contact of humans or other organisms with those agents (that is, chemical, physical, and biologic stressors) and their fate in living systems. The concept of exposure science has been instrumental in helping us understand how stressors affect human and ecosystem health, and in efforts to prevent or reduce contact with harmful stressors. In this way exposure science has played an integral role in many areas of environmental health, and can help meet growing needs in environmental regulation, urban and ecosystem planning, and disaster management. Exposure Science in the 21st Century: A Vision and A Strategy explains that there are increasing demands for exposure science information, for example to meet needs for data on the thousands of chemicals introduced into the market each year, and to better understand the health effects of prolonged low-level exposure to stressors. Recent advances in tools and technologies-including sensor systems, analytic methods, molecular technologies, computational tools, and bioinformatics-have provided the potential for more accurate and comprehensive exposure science data than ever before. This report also provides a roadmap to take advantage of the technologic innovations and strategic collaborations to move exposure science into the future.
The nanotechnology sector, which generated about $225 billion in product sales in 2009, is predicted to expand rapidly over the next decade with the development of new technologies that have new capabilities. The increasing production and use of engineered nanomaterials (ENMs) may lead to greater exposures of workers, consumers, and the environment, and the unique scale-specific and novel properties of the materials raise questions about their potential effects on human health and the environment. Over the last decade, government agencies, academic institutions, industry, and others have conducted many assessments of the environmental, health, and safety (EHS) aspects of nanotechnology. The results of those efforts have helped to direct research on the EHS aspects of ENMs. However, despite the progress in assessing research needs and despite the research that has been funded and conducted, developers, regulators, and consumers of nanotechnology-enabled products remain uncertain about the types and quantities of nanomaterials in commerce or in development, their possible applications, and their associated risks. A Research Strategy for Environmental, Health, and Safety Aspects of Engineered Nanomaterials presents a strategic approach for developing the science and research infrastructure needed to address uncertainties regarding the potential EHS risks of ENMs. The report summarizes the current state of the science and high-priority data gaps on the potential EHS risks posed by ENMs and describes the fundamental tools and approaches needed to pursue an EHS risk research strategy. The report also presents a proposed research agenda, short-term and long-term research priorities, and estimates of needed resources and concludes by focusing on implementation of the research strategy and evaluation of its progress, elements that the committee considered integral to its charge.
Choice Recommended Title, April 2020 This comprehensive book, edited by two leading experts in nanotechnology and bioengineering with contributions from a global team of specialists, provides a detailed overview of the environmental and health impacts associated with the toxicology of nanomaterials. Special attention is given to nanomaterial toxicity during synthesis, production and application, and chapters throughout are focused on key areas that are important for future research and development of nanomaterials. This book will be of interest to advanced students studying biomedical engineering and materials science, PhD researchers, post-docs and academics working in the area of nanotechnology, medicine, manufacturing and regulatory bodies. Features: Collates and critically evaluates various aspects of the toxicology of nanomaterials in one comprehensive text Discusses the various effects of nanocrystals including the morphologies on cytotoxicity, in addition to the environmental and cytotoxicity risks of graphene and 2D nanomaterials Explores practical methods of detection and quantification, with applications in the environmental and healthcare fields
CHEMOMETRICS AND CHEMINFORMATICS IN AQUATIC TOXICOLOGY Explore chemometric and cheminformatic techniques and tools in aquatic toxicology Chemometrics and Cheminformatics in Aquatic Toxicology delivers an exploration of the existing and emerging problems of contamination of the aquatic environment through various metal and organic pollutants, including industrial chemicals, pharmaceuticals, cosmetics, biocides, nanomaterials, pesticides, surfactants, dyes, and more. The book discusses different chemometric and cheminformatic tools for non-experts and their application to the analysis and modeling of toxicity data of chemicals to various aquatic organisms. You’ll learn about a variety of aquatic toxicity databases and chemometric software tools and webservers as well as practical examples of model development, including illustrations. You’ll also find case studies and literature reports to round out your understanding of the subject. Finally, you’ll learn about tools and protocols including machine learning, data mining, and QSAR and ligand-based chemical design methods. Readers will also benefit from the inclusion of: A thorough introduction to chemometric and cheminformatic tools and techniques, including machine learning and data mining An exploration of aquatic toxicity databases, chemometric software tools, and webservers Practical examples and case studies to highlight and illustrate the concepts contained within the book A concise treatment of chemometric and cheminformatic tools and their application to the analysis and modeling of toxicity data Perfect for researchers and students in chemistry and the environmental and pharmaceutical sciences, Chemometrics and Cheminformatics in Aquatic Toxicology will also earn a place in the libraries of professionals in the chemical industry and regulators whose work involves chemometrics.