Download Free Advances In Sustainable Agriculture Book in PDF and EPUB Free Download. You can read online Advances In Sustainable Agriculture and write the review.

This new volume looks at the evolution and challenges of sustainable agriculture, a field that is growing in use and popularity, discussing some of the important ideas, practices, and policies that are essential to an effective sustainable agriculture strategy. The book features 25 chapters written by experts in crop improvement, natural resource management, crop protection, social sciences, and product development. The volume provides a good understanding of the use of sustainable agriculture and the sustainable management of agri-horticultural crops, focusing on eco-friendly approaches, such as the utilization of waste materials. Topics include ecofriendly plant protection measures, climate change and natural resource management, tools to mitigate the effect of extreme weather events, agrochemical research and regulation, soil carbon sequestration, water and nutrient management in agricultural systems, and more. Key features: Discusses sustainable agriculture within the framework of recent challenges in agriculture Looks at the development and diversification of crops and cultural practices to enhance biological and economic stability Discusses innovative nanotechnologies in research and production technologies Highlights the development of new varieties in agri-horticultural crops Discusses use of recent technologies for soil–plant–microbe–environment interactions.
In the last 20 years, there has been a remarkable emergence of innovations and technological advances that are generating promising changes and opportunities for sustainable agriculture, yet at the same time the agricultural sector worldwide faces numerous daunting challenges. Not only is the agricultural sector expected to produce adequate food, fiber, and feed, and contribute to biofuels to meet the needs of a rising global population, it is expected to do so under increasingly scarce natural resources and climate change. Growing awareness of the unintended impacts associated with some agricultural production practices has led to heightened societal expectations for improved environmental, community, labor, and animal welfare standards in agriculture. Toward Sustainable Agricultural Systems in the 21st Century assesses the scientific evidence for the strengths and weaknesses of different production, marketing, and policy approaches for improving and reducing the costs and unintended consequences of agricultural production. It discusses the principles underlying farming systems and practices that could improve the sustainability. It also explores how those lessons learned could be applied to agriculture in different regional and international settings, with an emphasis on sub-Saharan Africa. By focusing on a systems approach to improving the sustainability of U.S. agriculture, this book can have a profound impact on the development and implementation of sustainable farming systems. Toward Sustainable Agricultural Systems in the 21st Century serves as a valuable resource for policy makers, farmers, experts in food production and agribusiness, and federal regulatory agencies.
Sustainable Agriculture: Advances in Plant Metabolome and Microbiome focuses on the advancement of basic and applied research related to plant-microbe interaction and their implementation in progressive agricultural sustainability. The book also highlights the developing area of bioinformatics tools for the interpretation of metabolome, the integration of statistical and bioinformatics tools to manage huge generating data, metabolite profiling, and key signaling-driven substances, along with a section on the role of key biosynthetic pathways. Focused on selecting positive and effective interactive core-microbiome which will be adaptive and sustainable, this book will help researchers further improve the quality and productivity of crops through sustainable agriculture. Details the two-way interactive approach to both plants and microbes Describes setting up core and functional microbiomes Presents the relationship of metabolomics and biocontrol
Agroforestry in Sustainable Agricultural Systems examines the environmental and social conditions that affect the roles and performance of trees in field- and forest-based agricultural production systems. Various types of ecological settings for agroforestry are analyzed within temperate and tropical regions. The roles of soil, water, light, nutrient and pest management in mixed, annual, woody perennial and livestock systems are discussed. Important new case studies from around the world offer innovative strategies that have been used successfully in raising forests and tree products on a sustainable basis for commercial harvesting and for providing other environmental services in land conservation and watershed management.
This volume is a ready reference on sustainable agriculture and reinforce the understanding for its utilization to develop environmentally sustainable and profitable food production systems. It describes ecological sustainability of farming systems, present innovations for improving efficiency in the use of resources for sustainable agriculture and propose technological options and new areas of research in this very important area of agriculture.
Recognition of the importance of soil organic matter (SOM) in soil health and quality is a major part of fostering a holistic, preventive approach to agricultural management. Students in agronomy, horticulture, and soil science need a textbook that emphasizes strategies for using SOM management in the prevention of chemical, biological, and physical problems. Soil Organic Matter in Sustainable Agriculture gathers key scientific reviews concerning issues that are critical for successful SOM management. This textbook contains evaluations of the types of organic soil constituents—organisms, fresh residues, and well-decomposed substances. It explores the beneficial effects of organic matter on soil and the various practices that enhance SOM. Chapters include an examination of the results of crop management practices on soil organisms, organic matter gains and losses, the significance of various SOM fractions, and the contributions of fungi and earthworms to soil quality and crop growth. Emphasizing the prevention of imbalances that lead to soil and crop problems, the text also explores the development of soils suppressive to plant diseases and pests, and relates SOM management to the supply of nutrients to crops. This book provides the essential scientific background and poses the challenging questions that students need to better understand SOM and develop improved soil and crop management systems.
Crop modelling has huge potential to improve decision making in farming. This collection reviews advances in next-generation models focused on user needs at the whole farm system and landscape scale.
The emergence of nanotechnology and the development of new nano-devices and nanomaterials open up opportunities for novel applications in agriculture and biotechnology. Nanotechnology has the potential to modernize the agricultural research and practice. Nanotechnology has gained momentum in agriculture sector during last decade, but still there are knowledge gap between scientific communities. This book comprise of holistic coverage about current developments in nanotechnology based sustainable agriculture. It contains sections focusing on each aspect of the implications of nanotechnology in different sectors of agriculture from crop production, soil fertility management, crop improvement etc. It also provides insight into the current trends and future prospects of nanotechnology along with the benefits and risks and their impact on agricultural ecosystems. This book emphasize on use of nanotechnology to reduce agrochemical usage via smart delivery system, increase nutrient use efficiency, improved water and nutrient management, nano-biosensors for management of plant diseases etc. The book provides thorough knowledge for dealing with current challenges of agricultural sector using nanotechnology based agricultural interventions. It will serve as reference literature for scientists, policymakers, students and researchers who are engaged in development of strategies to cope up with challenges of current agricultural systems and society.
Sustainable Intensification (SI) has recently emerged as a key concept for agricultural development, recognising that yields must increase to feed a growing world population, but it must be achieved without damage to the environment, on finite land resources and while preserving social and natural capital. It also recognises that all initiatives must cope with the challenges of climate change to agricultural production, food security and livelihoods. This multidisciplinary book presents state-of-the-art reviews of current SI approaches to promote major food crops, challenges and advances made in technology, and the institutional and policy measures necessary to overcome the constraints faced by smallholder farmers. Adressing the UN's Sustainable Development Goal 2, the various chapters based on evidence and experiences of reputed researchers show how these innovations, if properly nurtured and implemented, can make a difference to food and nutrition security outcomes. Case studies from around the world are included, with a particular emphasis on Asia and Sub-Saharan Africa. The focus is not only on scientific aspects such as climate-smart agriculture, agroecology and improving input use efficiency and management, but also on institutional and policy challenges that must be met to increase the net societal benefits of sustainable agricultural intensification. The book is aimed at advanced students and researchers in sustainable agriculture and policy, development practitioners, policy makers and non-governmental and farmer organisations.
For nearly a century, scientific advances have fueled progress in U.S. agriculture to enable American producers to deliver safe and abundant food domestically and provide a trade surplus in bulk and high-value agricultural commodities and foods. Today, the U.S. food and agricultural enterprise faces formidable challenges that will test its long-term sustainability, competitiveness, and resilience. On its current path, future productivity in the U.S. agricultural system is likely to come with trade-offs. The success of agriculture is tied to natural systems, and these systems are showing signs of stress, even more so with the change in climate. More than a third of the food produced is unconsumed, an unacceptable loss of food and nutrients at a time of heightened global food demand. Increased food animal production to meet greater demand will generate more greenhouse gas emissions and excess animal waste. The U.S. food supply is generally secure, but is not immune to the costly and deadly shocks of continuing outbreaks of food-borne illness or to the constant threat of pests and pathogens to crops, livestock, and poultry. U.S. farmers and producers are at the front lines and will need more tools to manage the pressures they face. Science Breakthroughs to Advance Food and Agricultural Research by 2030 identifies innovative, emerging scientific advances for making the U.S. food and agricultural system more efficient, resilient, and sustainable. This report explores the availability of relatively new scientific developments across all disciplines that could accelerate progress toward these goals. It identifies the most promising scientific breakthroughs that could have the greatest positive impact on food and agriculture, and that are possible to achieve in the next decade (by 2030).