Download Free Advances In Nanostructures Book in PDF and EPUB Free Download. You can read online Advances In Nanostructures and write the review.

Advances in Semiconductor Nanostructures: Growth, Characterization, Properties and Applications focuses on the physical aspects of semiconductor nanostructures, including growth and processing of semiconductor nanostructures by molecular-beam epitaxy, ion-beam implantation/synthesis, pulsed laser action on all types of III–V, IV, and II–VI semiconductors, nanofabrication by bottom-up and top-down approaches, real-time observations using in situ UHV-REM and high-resolution TEM of atomic structure of quantum well, nanowires, quantum dots, and heterostructures and their electrical, optical, magnetic, and spin phenomena. The very comprehensive nature of the book makes it an indispensable source of information for researchers, scientists, and post-graduate students in the field of semiconductor physics, condensed matter physics, and physics of nanostructures, helping them in their daily research. - Presents a comprehensive reference on the novel physical phenomena and properties of semiconductor nanostructures - Covers recent developments in the field from all over the world - Provides an International approach, as chapters are based on results obtained in collaboration with research groups from Russia, Germany, France, England, Japan, Holland, USA, Belgium, China, Israel, Brazil, and former Soviet Union countries
Advances in Nanostructures: Processing and Methodology to Grow Nanostructures provides readers with the most appropriate nanostructuring methods used for obtaining nanoparticles with specific requirements suitable for different applications, taking into consideration characteristics such as dimension and shape. The different methods used to synthesize nanomaterials are thoroughly discussed, along nanomaterials' properties and characterization techniques reviewed. Chapters on advanced nanostructures' applications provide in-depth knowledge on applications of these nanostructures in interdisciplinary fields, such as energy, environment, and healthcare areas. - Discusses various physical and chemical methods of preparing nanomaterials - Presents some of the most important techniques for the characterization of nanostructures and nanoparticles - Features applications of nanostructures in the fields of energy, environment, and healthcare
With contributed papers from the 2011 Materials Science and Technology symposia, this is a useful one-stop resource for understanding the most important issues in advances in the synthesis, processing, and applications of nanostructures. Logically organized and carefully selected, the articles cover the themes of the symposia: Nanotechnology for Energy, Healthcare and Industry; Controlled Synthesis Processing and Applications of Structural and Functional Nanomaterials; and Synthesis, Properties, and Applications of Noble Metal Nanostructures. A must for academics in mechanical and chemical engineering, materials and or ceramics, and chemistry.
Advances in Nano-fertilizers and Nano-pesticides in Agriculture: A Smart Delivery System for Crop Improvement explores the use of nanotechnology for the controlled delivery of pesticides, herbicides and fertilizers that improve the safety of products while also increasing the efficiency of food production and decreased environmental pollution. The development of nanodevices such as smart delivery systems to target specific sites, as well as nanocarriers for chemical controlled release are currently important aspects in novel agriculture and require a strong foundation of understanding, not only the technology, but also the resulting impacts. - Fills key knowledge- gaps of bio-nanotechnology, how they interact with plant cells and their biological consequences - Focuses on agro-nanotechnology which can be utilized for developing healthy seeds - Explores the possibilities of macronutrient nano-based fertilizers
This book highlights the latest advances in chemical and physical methods for thin-film deposition and surface engineering, including ion- and plasma-assisted processes, focusing on explaining the synthesis/processing–structure–properties relationship for a variety of thin-film systems. It covers topics such as advances in thin-film synthesis; new thin-film materials: diamond-like films, granular alloys, high-entropy alloys, oxynitrides, and intermetallic compounds; ultra-hard, wear- and oxidation-resistant and multifunctional coatings; superconducting, magnetic, semiconducting, and dielectric films; electrochemical and electroless depositions; thin-film characterization and instrumentation; and industrial applications.
Nanostructures for Antimicrobial Therapy discusses the pros and cons of the use of nanostructured materials in the prevention and eradication of infections, highlighting the efficient microbicidal effect of nanoparticles against antibiotic-resistant pathogens and biofilms. Conventional antibiotics are becoming ineffective towards microorganisms due to their widespread and often inappropriate use. As a result, the development of antibiotic resistance in microorganisms is increasingly being reported. New approaches are needed to confront the rising issues related to infectious diseases. The merging of biomaterials, such as chitosan, carrageenan, gelatin, poly (lactic-co-glycolic acid) with nanotechnology provides a promising platform for antimicrobial therapy as it provides a controlled way to target cells and induce the desired response without the adverse effects common to many traditional treatments. Nanoparticles represent one of the most promising therapeutic treatments to the problem caused by infectious micro-organisms resistant to traditional therapies. This volume discusses this promise in detail, and also discusses what challenges the greater use of nanoparticles might pose to medical professionals. The unique physiochemical properties of nanoparticles, combined with their growth inhibitory capacity against microbes has led to the upsurge in the research on nanoparticles as antimicrobials. The importance of bactericidal nanobiomaterials study will likely increase as development of resistant strains of bacteria against most potent antibiotics continues. - Shows how nanoantibiotics can be used to more effectively treat disease - Discusses the advantages and issues of a variety of different nanoantibiotics, enabling medics to select which best meets their needs - Provides a cogent summary of recent developments in this field, allowing readers to quickly familiarize themselves with this topic area
Solid State Physics
This book contains 17 papers from the Controlled Processing of Nanoparticle-based Materials and Nanostructured Films; Nanotechnology for Energy, Healthcare, and Industry; and Nanolaminated Ternary Carbides and Nitrides (MAX Phases) symposia held during the 2010 Materials Science and Technology (MS&T'10) meeting, October 17-21, 2010, Houston, Texas. Topics include: Direct Manufacturing; Low Dimension Nanomaterials; Processing and Sintering; Thin Films; Nanolaminated Ternary Carbides and Nitrides (MAX Phases); and Novel Nanomaterial Approaches.
Nanostructures covers the main concepts and fundamentals of nanoscience emphasizing characteristics and properties of numerous nanostructures. This book offers a clear explanation of nanostructured materials via several examples of synthesis/processing methodologies and materials characterization. In particular, this book is targeted to a range of scientific backgrounds, with some chapters written at an introductory level and others with the in-depth coverage required for a seasoned professional. Nanostructures is an important reference source for early-career researchers and practicing materials scientists and engineers seeking a focused overview of the science of nanostructures and nanostructured systems, and their industrial applications. - Presents an accessible overview of the science behind, and industrial uses of, nanostructures. Gives materials scientists and engineers an understanding of how using nanostructures may increase material performance - Targeted to a wide audience, including graduate and postgraduate study with a didactic approach to aid fluid learning - Features an analysis of different nanostructured systems, explaining their properties and industrial applications
Nanostructures and Mesoscopic Systems presents the proceedings of the International Symposium held in Santa Fe, New Mexico on May 20-24, 1991. The book discusses nanostructure physics; nanostructures in motion; and advances in nanostructure fabrication. The text also describes ballistic transport and coherence; low-dimensional tunneling; and electron correlation and coulomb blockade. Banostructure arrays and collective effects; the theory and modeling of nanostructures; and mesoscopic systems are also encompassed. The book further tackles the optical properties of nanostructures.