Download Free Advances In Intelligent Decision Technologies Book in PDF and EPUB Free Download. You can read online Advances In Intelligent Decision Technologies and write the review.

Intelligent Decision Technologies (IDT) seeks an interchange of research on intelligent systems and intelligent technologies which enhance or improve decision making in industry, government and academia. The focus is interdisciplinary in nature, and includes research on all aspects of intelligent decision technologies, from fundamental development to the applied system. This volume represents leading research from the Third KES International Symposium on Intelligent Decision Technologies (KES IDT’11), hosted and organized by the University of Piraeus, Greece, in conjunction with KES International. The symposium was concerned with theory, design, development, implementation, testing and evaluation of intelligent decision systems. Topics include decision making theory, intelligent agents, fuzzy logic, multi-agent systems, Bayesian networks, optimization, artificial neural networks, genetic algorithms, expert systems, decision support systems, geographic information systems, case-based reasoning, time series, knowledge management systems, rough sets, spatial decision analysis, and multi-criteria decision analysis. These technologies have the potential to revolutionize decision making in many areas of management, healthcare, international business, finance, accounting, marketing, military applications, ecommerce, network management, crisis response, building design, information retrieval, and disaster recovery for a better future. The symposium was concerned with theory, design, development, implementation, testing and evaluation of intelligent decision systems. Topics include decision making theory, intelligent agents, fuzzy logic, multi-agent systems, Bayesian networks, optimization, artificial neural networks, genetic algorithms, expert systems, decision support systems, geographic information systems, case-based reasoning, time series, knowledge management systems, rough sets, spatial decision analysis, and multi-criteria decision analysis. These technologies have the potential to revolutionize decision making in many areas of management, healthcare, international business, finance, accounting, marketing, military applications, ecommerce, network management, crisis response, building design, information retrieval, and disaster recovery for a better future.
Intelligent Decision Technologies (IDT) seeks an interchange of research on intelligent systems and intelligent technologies which enhance or improve decision making in industry, government and academia. The focus is interdisciplinary in nature, and includes research on all aspects of intelligent decision technologies, from fundamental development to the applied system. This volume represents leading research from the Second KES International Symposium on Intelligent Decision Technologies (KES IDT’10), hosted and organized by the Sellinger School of Business and Management, Loyola University Maryland, USA, in conjunction with KES International. The symposium was concerned with theory, design development, implementation, testing and evaluation of intelligent decision systems. Topics include decision making theory, intelligent agents, fuzzy logic, multi-agent systems, Bayesian networks, optimization, artificial neural networks, genetic algorithms, expert systems, decision support systems, geographic information systems, case-based reasoning, time series, knowledge management systems, Kansei communication, rough sets, spatial decision analysis, and multi-criteria decision analysis. These technologies have the potential to revolutionize decision making in many areas of management, healthcare, international business, finance, accounting, marketing, military applications, ecommerce, network management, crisis response, building design, information retrieval, and disaster recovery.
IDT (Intelligent Decision Technologies) seeks an interchange of research on intelligent systems and intelligent technologies which enhance or improve decision making in industry, government and academia. The focus is interdisciplinary in nature, and includes research on all aspects of intelligent decision technologies, from fundamental development to the applied system. It constitutes a great honor and pleasure for us to publish the works and new research results of scholars from the First KES International Symposium on Intelligent Decision Technologies (KES IDT’09), hosted and organized by University of Hyogo in conjunction with KES International (Himeji, Japan, April, 2009). The symposium was concerned with theory, design, development, implementation, testing and evaluation of intelligent decision systems. Its topics included intelligent agents, fuzzy logic, multi-agent systems, artificial neural networks, genetic algorithms, expert systems, intelligent decision making support systems, information retrieval systems, geographic information systems, and knowledge management systems. These technologies have the potential to support decision making in many areas of management, international business, finance, accounting, marketing, healthcare, military applications, production, networks, traffic management, crisis response, and human interfaces.
Intelligent Decision Support Systems have the potential to transform human decision making by combining research in artificial intelligence, information technology, and systems engineering. The field of intelligent decision making is expanding rapidly due, in part, to advances in artificial intelligence and network-centric environments that can deliver the technology. Communication and coordination between dispersed systems can deliver just-in-time information, real-time processing, collaborative environments, and globally up-to-date information to a human decision maker. At the same time, artificial intelligence techniques have demonstrated that they have matured sufficiently to provide computational assistance to humans in practical applications. This book includes contributions from leading researchers in the field beginning with the foundations of human decision making and the complexity of the human cognitive system. Researchers contrast human and artificial intelligence, survey computational intelligence, present pragmatic systems, and discuss future trends. This book will be an invaluable resource to anyone interested in the current state of knowledge and key research gaps in the rapidly developing field of intelligent decision support.
This book will be bought by researchers and graduates students in Artificial Intelligence and management as well as practising managers and consultants interested in the application of IT and information systems in real business environment.
This book gathers selected papers from the KES-IDT-2020 Conference, held as a Virtual Conference on June 17–19, 2020. The aim of the annual conference was to present and discuss the latest research results, and to generate new ideas in the field of intelligent decision-making. However, the range of topics discussed during the conference was definitely broader and covered methods in e.g. classification, prediction, data analysis, big data, data science, decision support, knowledge engineering, and modeling in such diverse areas as finance, cybersecurity, economics, health, management and transportation. The Problems in Industry 4.0 and IoT are also addressed. The book contains several sections devoted to specific topics, such as Intelligent Data Processing and its Applications High-Dimensional Data Analysis and its Applications Multi-Criteria Decision Analysis – Theory and Applications Large-Scale Systems for Intelligent Decision-Making and Knowledge Engineering Decision Technologies and Related Topics in Big Data Analysis of Social and Financial Issues Decision-Making Theory for Economics
This book presents innovative and high-quality research regarding advanced decision support systems (DSSs). It describes the foundations, methods, methodologies, models, tools, and techniques for designing, developing, implementing and evaluating advanced DSSs in different fields, including finance, health, emergency management, industry and pollution control. Decision support systems employ artificial intelligence methods to heuristically address problems that are cannot be solved using formal techniques. In this context, technologies such as the Semantic Web, linked data, big data, and machine learning are being applied to provide integrated support for individuals and organizations to make more rational decisions. The book is organized into two parts. The first part covers decision support systems for industry, while the second part presents case studies related to clinical emergency management and pollution control.
This book contains the topics of artificial intelligence and deep learning that do have much application in real-life problems. The concept of uncertainty has long been used in applied science, especially decision making and a logical decision must be made in the field of uncertainty or in the real-life environment that is formed and combined with vague concepts and data. The chapters of this book are connected to the new concepts and aspects of decision making with uncertainty. Besides, other chapters are involved with the concept of data mining and decision making under uncertain computations.
In this 2012 edition of Advances in Knowledge-Based and Intelligent Information and Engineering Systems the latest innovations and advances in Intelligent Systems and related areas are presented by leading experts from all over the world. The 228 papers that are included cover a wide range of topics. One emphasis is on Information Processing, which has become a pervasive phenomenon in our civilization. While the majority of Information Processing is becoming intelligent in a very broad sense, major research in Semantics, Artificial Intelligence and Knowledge Engineering supports the domain specific applications that are becoming more and more present in our everyday living. Ontologies play a major role in the development of Knowledge Engineering in various domains, from Semantic Web down to the design of specific Decision Support Systems. Research on Ontologies and their applications is a highly active front of current Computational Intelligence science that is addressed here. Other subjects in this volume are modern Machine Learning, Lattice Computing and Mathematical Morphology.The wide scope and high quality of these contributions clearly show that knowledge engineering is a continuous living and evolving set of technologies aimed at improving the design and understanding of systems and their relations with humans.
This book represents the experience of successful researchers from four continents on a broad range of intelligent systems, and it hints how to avoid anticipated conflicts and problems during multidisciplinary innovative research from Industry 4.0 and/or Internet of Things through modern machine learning, and software agent applications to open data science big data/advance analytics/visual analytics/text mining/web mining/knowledge discovery/deep data mining issues. The considered intelligent part is essential in most smart/control systems, cyber security, bioinformatics, virtual reality, robotics, mathematical modelling projects, and its significance rapidly increases in other technologies. Theoretical foundations of fuzzy sets, mathematical and non-classical logic also are rapidly developing.