Download Free Advances In Independent Component Analysis And Learning Machines Book in PDF and EPUB Free Download. You can read online Advances In Independent Component Analysis And Learning Machines and write the review.

In honour of Professor Erkki Oja, one of the pioneers of Independent Component Analysis (ICA), this book reviews key advances in the theory and application of ICA, as well as its influence on signal processing, pattern recognition, machine learning, and data mining. Examples of topics which have developed from the advances of ICA, which are covered in the book are: - A unifying probabilistic model for PCA and ICA - Optimization methods for matrix decompositions - Insights into the FastICA algorithm - Unsupervised deep learning - Machine vision and image retrieval - A review of developments in the theory and applications of independent component analysis, and its influence in important areas such as statistical signal processing, pattern recognition and deep learning - A diverse set of application fields, ranging from machine vision to science policy data - Contributions from leading researchers in the field
A comprehensive introduction to ICA for students and practitioners Independent Component Analysis (ICA) is one of the most exciting new topics in fields such as neural networks, advanced statistics, and signal processing. This is the first book to provide a comprehensive introduction to this new technique complete with the fundamental mathematical background needed to understand and utilize it. It offers a general overview of the basics of ICA, important solutions and algorithms, and in-depth coverage of new applications in image processing, telecommunications, audio signal processing, and more. Independent Component Analysis is divided into four sections that cover: * General mathematical concepts utilized in the book * The basic ICA model and its solution * Various extensions of the basic ICA model * Real-world applications for ICA models Authors Hyvarinen, Karhunen, and Oja are well known for their contributions to the development of ICA and here cover all the relevant theory, new algorithms, and applications in various fields. Researchers, students, and practitioners from a variety of disciplines will find this accessible volume both helpful and informative.
This book presents the original articles that have been accepted in the 2019 INNS Big Data and Deep Learning (INNS BDDL) international conference, a major event for researchers in the field of artificial neural networks, big data and related topics, organized by the International Neural Network Society and hosted by the University of Genoa. In 2019 INNS BDDL has been held in Sestri Levante (Italy) from April 16 to April 18. More than 80 researchers from 20 countries participated in the INNS BDDL in April 2019. In addition to regular sessions, INNS BDDL welcomed around 40 oral communications, 6 tutorials have been presented together with 4 invited plenary speakers. This book covers a broad range of topics in big data and deep learning, from theoretical aspects to state-of-the-art applications. This book is directed to both Ph.D. students and Researchers in the field in order to provide a general picture of the state-of-the-art on the topics addressed by the conference.
This book offers an in-depth investigation into the complexities of long-term structural health monitoring (SHM) in civil structures, specifically focusing on the challenges posed by small data and environmental and operational changes (EOCs). Traditional contact-based sensor networks in SHM produce large amounts of data, complicating big data management. In contrast, synthetic aperture radar (SAR)-aided SHM often faces challenges with small datasets and limited displacement data. Additionally, EOCs can mimic the structural damage, resulting in false errors that can critically affect economic and safety issues. Addressing these challenges, this book introduces seven advanced unsupervised learning methods for SHM, combining AI, data sampling, and statistical analysis. These include techniques for managing datasets and addressing EOCs. Methods range from nearest neighbor searching and Hamiltonian Monte Carlo sampling to innovative offline and online learning frameworks, focusing on data augmentation and normalization. Key approaches involve deep autoencoders for data processing and novel algorithms for damage detection. Validated using simulated data from the I-40 Bridge, USA, and real-world data from the Tadcaster Bridge, UK, these methods show promise in addressing SAR-aided SHM challenges, offering practical tools for real-world applications. The book, thereby, presents a comprehensive suite of innovative strategies to advance the field of SHM.
Independent Component Analysis (ICA) has recently become an important tool for modelling and understanding empirical datasets. It is a method of separating out independent sources from linearly mixed data, and belongs to the class of general linear models. ICA provides a better decomposition than other well-known models such as principal component analysis. This self-contained book contains a structured series of edited papers by leading researchers in the field, including an extensive introduction to ICA. The major theoretical bases are reviewed from a modern perspective, current developments are surveyed and many case studies of applications are described in detail. The latter include biomedical examples, signal and image denoising and mobile communications. ICA is discussed in the framework of general linear models, but also in comparison with other paradigms such as neural network and graphical modelling methods. The book is ideal for researchers and graduate students in the field.
This two-volume set constitutes the refereed proceedings of the workshops which complemented the 19th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in Würzburg, Germany, in September 2019. The 70 full papers and 46 short papers presented in the two-volume set were carefully reviewed and selected from 200 submissions. The two volumes (CCIS 1167 and CCIS 1168) present the papers that have been accepted for the following workshops: Workshop on Automating Data Science, ADS 2019; Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence and eXplainable Knowledge Discovery in Data Mining, AIMLAI-XKDD 2019; Workshop on Decentralized Machine Learning at the Edge, DMLE 2019; Workshop on Advances in Managing and Mining Large Evolving Graphs, LEG 2019; Workshop on Data and Machine Learning Advances with Multiple Views; Workshop on New Trends in Representation Learning with Knowledge Graphs; Workshop on Data Science for Social Good, SoGood 2019; Workshop on Knowledge Discovery and User Modelling for Smart Cities, UMCIT 2019; Workshop on Data Integration and Applications Workshop, DINA 2019; Workshop on Machine Learning for Cybersecurity, MLCS 2019; Workshop on Sports Analytics: Machine Learning and Data Mining for Sports Analytics, MLSA 2019; Workshop on Categorising Different Types of Online Harassment Languages in Social Media; Workshop on IoT Stream for Data Driven Predictive Maintenance, IoTStream 2019; Workshop on Machine Learning and Music, MML 2019; Workshop on Large-Scale Biomedical Semantic Indexing and Question Answering, BioASQ 2019.
Biometrics—Advances in Research and Application: 2013 Edition is a ScholarlyBrief™ that delivers timely, authoritative, comprehensive, and specialized information about ZZZAdditional Research in a concise format. The editors have built Biometrics—Advances in Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about ZZZAdditional Research in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Biometrics—Advances in Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
A tutorial-style introduction to a class of methods for extracting independent signals from a mixture of signals originating from different physical sources; includes MatLab computer code examples. Independent component analysis (ICA) is becoming an increasingly important tool for analyzing large data sets. In essence, ICA separates an observed set of signal mixtures into a set of statistically independent component signals, or source signals. In so doing, this powerful method can extract the relatively small amount of useful information typically found in large data sets. The applications for ICA range from speech processing, brain imaging, and electrical brain signals to telecommunications and stock predictions. In Independent Component Analysis, Jim Stone presents the essentials of ICA and related techniques (projection pursuit and complexity pursuit) in a tutorial style, using intuitive examples described in simple geometric terms. The treatment fills the need for a basic primer on ICA that can be used by readers of varying levels of mathematical sophistication, including engineers, cognitive scientists, and neuroscientists who need to know the essentials of this evolving method. An overview establishes the strategy implicit in ICA in terms of its essentially physical underpinnings and describes how ICA is based on the key observations that different physical processes generate outputs that are statistically independent of each other. The book then describes what Stone calls "the mathematical nuts and bolts" of how ICA works. Presenting only essential mathematical proofs, Stone guides the reader through an exploration of the fundamental characteristics of ICA. Topics covered include the geometry of mixing and unmixing; methods for blind source separation; and applications of ICA, including voice mixtures, EEG, fMRI, and fetal heart monitoring. The appendixes provide a vector matrix tutorial, plus basic demonstration computer code that allows the reader to see how each mathematical method described in the text translates into working Matlab computer code.
Affective computing refers to computing that relates to, arises from, or influences emotions, as pioneered by Rosalind Picard in 1995. The goal of affective computing is to bridge the gap between human and machines and ultimately enable robots to communicate with human naturally and emotionally. Recently, the research on affective computing has gained considerable progress with many fields contributing including neuroscience, psychology, education, medicine, behavior, sociology, and computer science. Current research in affective computing mainly focuses on estimating of human emotions through different forms of signals, e.g., face video, EEG, Speech, PET scans or fMRI. Inferring the emotion of humans is difficult, as emotion is a subjective, unconscious experience characterized primarily by psycho-physiological expressions and biological reactions. It is influenced by hormones and neurotransmitters such as dopamine, noradrenaline, serotonin, oxytocin, GABA… etc. The physiology of emotion is closely linked to arousal of the nervous system with various states and strengths relating, apparently, to different particular emotions. To understand “emotion” or “affect” merely by machine learning or big data analysis is not enough, but the understanding and applications from the intrinsic features of emotions from the neuroscience aspect is essential.
This two-volume set, LNCS 11317 and 12318, constitutes the thoroughly refereed proceedings of the 4th International Joint Conference, APWeb-WAIM 2020, held in Tianjin, China, in September 2020. Due to the COVID-19 pandemic the conference was organizedas a fully online conference. The 42 full papers presented together with 17 short papers, and 6 demonstration papers were carefully reviewed and selected from 180 submissions. The papers are organized around the following topics: Big Data Analytics; Graph Data and Social Networks; Knowledge Graph; Recommender Systems; Information Extraction and Retrieval; Machine Learning; Blockchain; Data Mining; Text Analysis and Mining; Spatial, Temporal and Multimedia Databases; Database Systems; and Demo.