Download Free Advances In Gyroscope Technologies Book in PDF and EPUB Free Download. You can read online Advances In Gyroscope Technologies and write the review.

This monograph collects and critically reviews the main results obtained by the scientific community in gyroscope technologies research field. It describes architectures, design techniques and fabrication technology of angular rate sensors proposed in literature. MEMS, MOEMS, optical and mechanical technologies are discussed together with achievable performance. The book also consideres future research trends aimed to cover special applications. The book is intended for researchers and Ph.D. students interested in modelling, design and fabrication of gyros. The book may be a useful education support in some university courses focused on gyro technologies.
Kinematic Systems in Geodesy, Surveying, and Remote Sensing provides a state-of-the-art discussion on the use of the Global Positioning System (GPS) in combination with Inertial Navigation Systems (INS) for detailed sensing of the Earth's surface. Divided into two parts, the book first discusses GPS/INS with respect to theory and modelling, equipment trends, estimation methods and quality control, algorithms, and software trends. It then describes the applications of these kinematic systems to positioning and navigation, modelling and measurement of gravity, gravity gradiometry, and altitude. This collection of 63 presentations documents the symposium of the same name held in Banff, Alberta, September 1990. It is the sixth volume of the International Association of Geodesy Symposia series published by Springer-Verlag New York.
"Realizing the potential of the fiber optic gyro, like the ring laser gyro, has been a long and expensive process. Many researchers have made important enabling contributions, and many more engineers have worked diligently for many years on solving the problems associated with realizing viable inertial navigation and guidance produce at affordable costs. This book arose from efforts to form a special session to commemorate the fortieth anniversary of the first hardware demonstration of the fiber gyro in 1976 by Vali and Shorthill. The chapters contain contributions from key engineers and scientists who have worked from as early as 1977 to the present on manufacturing high-performance fiber gyros for many applications"--
Inertial navigation is widely used for the guidance of aircraft, missiles ships and land vehicles, as well as in a number of novel applications such as surveying underground pipelines in drilling operations. This book discusses the physical principles of inertial navigation, the associated growth of errors and their compensation. It draws current technological developments, provides an indication of potential future trends and covers a broad range of applications. New chapters on MEMS (microelectromechanical systems) technology and inertial system applications are included.
Written by one of the field’s leading experts, this landmark reference presents a thorough system analysis of the fiber-optic gyroscope (FOG), describing the concepts that have emerged as the preferred solutions for obtaining a practical device. This book’s first edition was published in the early 1990’s. If the basic design rules of the FOG have remained unchanged, the technology has certainly matured, and the expectations presented in the first edition have been largely exceeded. This second edition is updated throughout, featuring new content on Allan variance; testing with optical coherence domain polarimetry; the Shupe effect; and rare-Earth doped fiber ASE sources. In addition, brand new comprehensive appendixes cover the optics, single-mode fiber optics, and integrated optics necessary to understand the fiber gyro and provide an appropriate vocabulary for communicating with electronic component designers.
This thesis develops next-generation multi-degree-of-freedom gyroscopes and inertial measurement units (IMU) using micro-electromechanical-systems (MEMS) technology. It covers both a comprehensive study of the physics of resonator gyroscopes and novel micro/nano-fabrication solutions to key performance limits in MEMS resonator gyroscopes. Firstly, theoretical and experimental studies of physical phenomena including mode localization, nonlinear behavior, and energy dissipation provide new insights into challenges like quadrature errors and flicker noise in resonator gyroscope systems. Secondly, advanced designs and micro/nano-fabrication methods developed in this work demonstrate valuable applications to a wide range of MEMS/NEMS devices. In particular, the HARPSS+ process platform established in this thesis features a novel slanted nano-gap transducer, which enabled the first wafer-level-packaged single-chip IMU prototype with co-fabricated high-frequency resonant triaxial gyroscopes and high-bandwidth triaxial micro-gravity accelerometers. This prototype demonstrates performance amongst the highest to date, with unmatched robustness and potential for flexible substrate integration and ultra-low-power operation. This thesis shows a path toward future low-power IMU-based applications including wearable inertial sensors, health informatics, and personal inertial navigation.
This book covers recent topics on gyroscopes. It briefly introduces the history of gyroscopes, and presents a concise analysis of the main types. The classical structure and main performance parameters of an interferometric fiber-optic gyroscope and an integrated optics passive-resonator gyroscope are analyzed. The developmental progress of a fiber optic gyroscope and its research situation in the United States, Japan, France, and other major developing countries are also presented. An effective autoregressive moving average model was invented to reduce MEMS gyroscope noise behavior. A discrete-time nonlinear attitude tracking control system was verified to achieve the agility and large-angle attitude maneuvers of spacecraft by numerical simulations. MEMS gyroscopes were experimentally demonstrated to be effective tools for gait analysis and to reduce the cost of revealing underlying pathologies.
This book introduces readers to the shell structure, operating principle, manufacturing process, and control theory for cylindrical vibratory gyroscopes. The cylindrical vibratory gyroscope is an important type of Coriolis vibratory gyroscope that holds considerable potential for development and application. The main aspects addressed include: operating principle and structure, theoretical analysis and modeling, dynamic analysis and modeling, manufacturing process, parameter testing methods, closed-loop control, and the error compensation mechanism in cylindrical vibratory gyroscopes.
This book highlights an analytical solution for the dynamics of axially symmetric rotating objects. It also presents the theory of gyroscopic effects, explaining their physics and using mathematical models of Euler’s form for the motion of movable spinning objects to demonstrate these effects. The major themes and approaches are represented by the spinning disc and the action of the system of interrelated inertial torques generated by the centrifugal, common inertial, Coriolis forces, as well as the change in their angular momentum. These torques constitute the fundamental principles of the mechanical gyroscope theory that can be used for any rotating objects, like rings, cones, spheres, paraboloids and propellers of different designs. Lastly, the mathematical models for the gyroscopic effects are validated by practical tests.