Download Free Advances In Functionally Graded Materials And Structures Book in PDF and EPUB Free Download. You can read online Advances In Functionally Graded Materials And Structures and write the review.

Functionally graded materials (FGMs) were initially designed as thermal barrier materials for aerospace structures and fusion reactors and now they are also considered as potential structural materials for future high-speed spacecraft and recently are being increasingly considered in various applications to maximize strengths and integrities of many engineering structures. This book is a result of contributions of experts from international scientific community working in different aspects of FGMs and structures and reports on the state of the art research and development findings on this topic through original and innovative research studies. Through its six chapters the reader will have access to works related to processing, sintering properties and applications of functionally graded ceramics and new processing routes for FGMs while it introduces some specific applications, such as functionally graded annular fins and the high-performance self-lubricating ceramic composites with laminated graded structure. Besides, it presents an experimental crack propagation analysis of aluminum matrix FGMs and a unified accurate solution for three-dimensional vibration analysis of functionally graded plates and cylindrical shells with general boundary conditions.
The science and study of functionally graded materials (FGMs) have intrigued researchers over the last few decades. Their application has the capability to produce parts with unmatched properties which are virtually impossible to obtain via conventional material routes. This book addresses various FGM aspects and provides a relevant, high-quality, and comprehensive data source. The book covers trends, process classification on various bases, physical processes involved, structure, properties, applications, advantages, and limitations. Emerging trends in the field are discussed in detail and advancements are thoroughly reviewed and presented to broaden the spectrum of FGM applications. This reference book will be of interest to scholars, researchers, academicians, industry practitioners, government labs, libraries, and anyone interested in the area of materials engineering.
In the pages of this present monograph readers will find virtually everything they need to know about the latest advanced materials. The authors have covered almost every angle, including composites, functionally graded materials, and materials for high temperature service. They also examine advanced approaches to local and non-local analysis of localized damage, and provide a new description of crack deactivation. This highly informative volume also tackles the material properties for high temperature applications.
Seven years have elapsed since Dr. Renee Ford, editor-in-chief of Materials Technology, first suggested to me to publish a book on Functionally Graded Materials (FGMs). She said that the FGM concept, then largely unknown outside of Japan and a relatively few laboratories elsewhere, would be of great interest to everyone working in the materials field because of its potentially universal applicability. There was no book about FGMs in English at that time, although the number of research papers, review articles, and FGM conference proceedings had been increasing yearly. We discussed what the book should cover, and decided it should present a comprehensive description from basic theory to the most recent applications of FGMs. This would make it useful both as an introduction to FGMs for those simply curious about what this new materials field was all about, and also as a textbook for researchers, engineers, and graduate students in various material fields. The FGM Forum in Japan generously offered to support this publication program. is very difficult for an individual author to write a book that Because it covers such a wide range of various aspects of many different materials, I invited more than 30 eminent materials scientists throughout the world, who were associated with FGM research, to contribute selected topics. I also asked several leading researchers in this field to edit selected chapters: Dr. Barry H. Rabin, then at the U. S.
This book presents the concept of functionally graded materials as well as their use and different fabrication processes. The authors describe the use of additive manufacturing technology for the production of very complex parts directly from the three dimension computer aided design of the part by adding material layer after layer. A case study is also presented in the book on the experimental analysis of functionally graded material using laser metal deposition process.
Mechanics of Functionally Graded Material Structures is an authoritative and fresh look at various functionally graded materials, customizing them with various structures. The book is devoted to tailoring material properties to the needed structural performance. The authors pair materials with the appropriate structures based upon their purpose and use.Material grading of structures depending upon thickness, axial and polar directions are discussed. Three dimensional analysis of rectangular plates made of functional graded materials and vibrational tailoring of inhomogeneous beams and circular plates are both covered in great detail. The authors derive novel closed form solutions that can serve as benchmarks that numerical solutions can be compared to. These are published for the first time in the literature. This is a unique book that gives the first exposition of the effects of various grading mechanisms on the structural behavior as well as taking into account vibrations and buckling.
This book provides topical information on innovative, structural and functional materials and composites with applications in various engineering fields covering the structure, properties, manufacturing process, and applications of these materials. It covers various topics in layered structures and layered materials. It discusses the latest developments in the materials engineering field. This book will be useful for academicians, researchers, and practitioners working in the fields of materials engineering, layered structures, and composite materials.
The book deals with novel aspects and perspectives in functionally graded materials (FGMs), which are advanced engineering materials designed for a specific performance or function with spatial gradation in structure and/or composition. The contributions mainly focus on numerical simulations of mechanical properties and the behavior of FGMs and FGM structures. Several advancements in numerical simulations that are particularly useful for investigations on FGMs have been proposed and demonstrated in this Special Issue. Such proposed approaches provide incisive methods to explore and predict the mechanical and structural characteristics of FGMs subjected to thermoelectromechanical loadings under various boundary and environmental conditions. The contributions have resulted in enhanced activity regarding the prediction of FGM properties and global structural responses, which are of great importance when considering the potential applications of FGM structures. Furthermore, the presented scientific scope is, in some way, an answer to the continuous demand for FGM structures, and opens new perspectives for their practical use.
Design of Marine Risers with Functionally Graded Materials focuses on the application and use of marine risers fabricated with functionally graded materials (FGM) in ocean environments. Chapters cover the various types of marine risers available, common problems (corrosion), their fabrication and manufacturing, and their application and use in marine risers. A functionally graded materials mould is then subsequently investigated by various structural and metallurgical examinations to assess its suitability as an alternate material in the marine environment. Several characteristics of the newly developed FGM are compared with other conventional materials to explicitly highlight the superiority of the newly developed FGM. Further chapters focus on novel design methods, such as VIV suppression systems for risers with detailed experimental investigations carried out on cylinders and a chapter on advanced materials, including titanium and composites and their application and use in the marine environment. - Covers all types of marine risers, materials, properties and behavior - Features advances in design for functionally graded materials in marine risers and offshore structures - Includes new additive manufacturing techniques and the design of vortex induced vibrations in marine risers