Download Free Advances In Discrete Tomography And Its Applications Book in PDF and EPUB Free Download. You can read online Advances In Discrete Tomography And Its Applications and write the review.

The book provides a unified presentation of new methods, algorithms, and select applications that are the foundations of multidimensional image construction and reconstruction. The self-contained survey chapters, written by leading mathematicians, engineers, and computer scientists, present cutting-edge research and results in the field. Three main areas are covered: theoretical results, algorithms, and practical applications. Following an historical and introductory overview of the field, the book explores the various mathematical and computational problems of discrete tomography with an emphasis on new applications.
Goals of the Book Overthelast thirty yearsthere has been arevolutionindiagnostic radiology as a result oftheemergenceofcomputerized tomography (CT), which is the process of obtaining the density distribution within the human body from multiple x-ray projections. Since an enormous variety of possible density values may occur in the body, a large number of projections are necessary to ensure the accurate reconstruction oftheir distribution. There are other situations in which we desire to reconstruct an object from its projections, but in which we know that the object to be recon structed has only a small number of possible values. For example, a large fraction of objects scanned in industrial CT (for the purpose of nonde structive testing or reverse engineering) are made of a single material and so the ideal reconstruction should contain only two values: zero for air and the value associated with the material composing the object. Similar as sumptions may even be made for some specific medical applications; for example, in angiography ofthe heart chambers the value is either zero (in dicating the absence of dye) or the value associated with the dye in the chamber. Another example arises in the electron microscopy of biological macromolecules, where we may assume that the object to be reconstructed is composed of ice, protein, and RNA. One can also apply electron mi croscopy to determine the presenceor absence ofatoms in crystallinestruc tures, which is again a two-valued situation.
The two volume set LNCS 11678 and 11679 constitutes the refereed proceedings of the 18th International Conference on Computer Analysis of Images and Patterns, CAIP 2019, held in Salerno, Italy, in September 2019. The 106 papers presented were carefully reviewed and selected from 176 submissions The papers are organized in the following topical sections: Intelligent Systems; Real-time and GPU Processing; Image Segmentation; Image and Texture Analysis; Machine Learning for Image and Pattern Analysis; Data Sets and Benchmarks; Structural and Computational Pattern Recognition; Posters.
A collection of invited chapters dedicated to Carlos Segovia, this unified and self-contained volume examines recent developments in real and harmonic analysis. The work begins with a chronological description of Segovia’s mathematical life, highlighting his original ideas and their evolution. Also included are surveys dealing with Carlos’ favorite topics, and PDE works written by students and colleagues close to Segovia whose careers were in some way influenced by him. Contributors: H. Aimar, A. Bonami, O. Blasco, L.A. Caffarelli, S. Chanillo, J. Feuto, L. Forzani, C.E. Gutíerrez, E. Harboure, A.L. Karakhanyan, C.E. Kenig, R.A. Macías, J.J. Manfredi, F.J. Martín-Reyes, P. Ortega, R. Scotto, A. de la Torre, J.L. Torrea.
This revised and expanded monograph presents the general theory for frames and Riesz bases in Hilbert spaces as well as its concrete realizations within Gabor analysis, wavelet analysis, and generalized shift-invariant systems. Compared with the first edition, more emphasis is put on explicit constructions with attractive properties. Based on the exiting development of frame theory over the last decade, this second edition now includes new sections on the rapidly growing fields of LCA groups, generalized shift-invariant systems, duality theory for as well Gabor frames as wavelet frames, and open problems in the field. Key features include: *Elementary introduction to frame theory in finite-dimensional spaces * Basic results presented in an accessible way for both pure and applied mathematicians * Extensive exercises make the work suitable as a textbook for use in graduate courses * Full proofs includ ed in introductory chapters; only basic knowledge of functional analysis required * Explicit constructions of frames and dual pairs of frames, with applications and connections to time-frequency analysis, wavelets, and generalized shift-invariant systems * Discussion of frames on LCA groups and the concrete realizations in terms of Gabor systems on the elementary groups; connections to sampling theory * Selected research topics presented with recommendations for more advanced topics and further readin g * Open problems to stimulate further research An Introduction to Frames and Riesz Bases will be of interest to graduate students and researchers working in pure and applied mathematics, mathematical physics, and engineering. Professionals working in digital signal processing who wish to understand the theory behind many modern signal processing tools may also find this book a useful self-study reference. Review of the first edition: "Ole Christensen’s An Introduction to Frames and Riesz Bases is a first-rate introduction to the field ... . The book provides an excellent exposition of these topics. The material is broad enough to pique the interest of many readers, the included exercises supply some interesting challenges, and the coverage provides enough background for those new to the subject to begin conducting original research." — Eric S. Weber, American Mathematical Monthly, Vol. 112, February, 2005
Functions of bounded variation represent an important class of functions. Studying their Fourier transforms is a valuable means of revealing their analytic properties. Moreover, it brings to light new interrelations between these functions and the real Hardy space and, correspondingly, between the Fourier transform and the Hilbert transform. This book is divided into two major parts, the first of which addresses several aspects of the behavior of the Fourier transform of a function of bounded variation in dimension one. In turn, the second part examines the Fourier transforms of multivariate functions with bounded Hardy variation. The results obtained are subsequently applicable to problems in approximation theory, summability of the Fourier series and integrability of trigonometric series.
Tomography provides 3D images of materials or engineering components and an unprecedented insight into their internal structure. This book discusses developments in the field, such as the extension of tomographic methods to materials research and engineering.
This revised and updated second edition – now with two new chapters - is the only book to give a comprehensive overview of computer algorithms for image reconstruction. It covers the fundamentals of computerized tomography, including all the computational and mathematical procedures underlying data collection, image reconstruction and image display. Among the new topics covered are: spiral CT, fully 3D positron emission tomography, the linogram mode of backprojection, and state of the art 3D imaging results. It also includes two new chapters on comparative statistical evaluation of the 2D reconstruction algorithms and alternative approaches to image reconstruction.
This book surveys the main mathematical ideas and techniques behind some well-established imaging modalities such as X-ray CT and emission tomography, as well as a variety of newly developing coupled-physics or hybrid techniques, including thermoacoustic tomography. The Radon Transform and Medical Imaging emphasizes mathematical techniques and ideas arising across the spectrum of medical imaging modalities and explains important concepts concerning inversion, stability, incomplete data effects, the role of interior information, and other issues critical to all medical imaging methods. For nonexperts, the author provides appendices that cover background information on notation, Fourier analysis, geometric rays, and linear operators. The vast bibliography, with over 825 entries, directs readers to a wide array of additional information sources on medical imaging for further study.