Download Free Advances In Cold Plasma Applications For Food Safety And Preservation Book in PDF and EPUB Free Download. You can read online Advances In Cold Plasma Applications For Food Safety And Preservation and write the review.

Cold plasma is one of the newest technologies tested for food preservation. In the last decade, this novel approach has shown promising results as a disinfectant of food products and packaging materials. Cold plasma is also affordable, waterless, waste-free, and leaves no chemical residue on the product. This exciting new technology is covered thoroughly in Advances in Cold Plasma Applications for Food Preservation.The book presents the basic principles of cold plasma, examples of food products disinfected by cold plasma, and the challenges of using cold plasma to maximize microbial and spore inactivation. Some chapters are devoted to specific applications of the technology, such as the use of cold plasma for space missions. Insights about the required regulations for this technology are also discussed.Written and edited by experts in the field, Advances in Cold Plasma Applications for Food Preservation is aimed at academic researchers, food scientists, and government officials working on disinfection of food products. - Covers the basic principles of cold plasma - Presents novel information and updated results in microbial, spore, and enzyme inactivation in different food products - Explores the use of cold plasma in disinfection of food products, including packaged food and food packaging materials and discuss how some food components are modified - Includes the description of some of the current equipment devices and the requirements to design specific food processing systems - Investigates specific uses of cold plasma in some applications such as space food - Details current regulatory status of cold plasma for food applications
Cold Plasma in Food and Agriculture: Fundamentals and Applications is an essential reference offering a broad perspective on a new, exciting, and growing field for the food industry. Written for researchers, industry personnel, and students interested in nonthermal food technology, this reference will lay the groundwork of plasma physics, chemistry, and technology, and their biological applications. Food scientists and food engineers interested in understanding the theory and application of nonthermal plasma for food will find this book valuable because it provides a roadmap for future developments in this emerging field. This reference is also useful for biologists, chemists, and physicists who wish to understand the fundamentals of plasma physics, chemistry, and technology and their biological interactions through applying novel plasma sources to food and other sensitive biomaterials. - Examines the topic of cold plasma technology for food applications - Demonstrates state-of-the-art developments in plasma technology and potential solutions to improve food safety and quality - Presents a solid introduction for readers on the topics of plasma physics and chemistry that are required to understand biological applications for foods - Serves as a roadmap for future developments for food scientists, food engineers, and biologists, chemists, and physicists working in this emerging field
Innovative Technologies for Food Preservation: Inactivation of Spoilage and Pathogenic Microorganisms covers the latest advances in non-thermal processing, including mechanical processes (such as high pressure processing, high pressure homogenization, high hydrodynamic pressure processing, pressurized fluids); electromagnetic technologies (like pulsed electric fields, high voltage electrical discharges, Ohmic heating, chemical electrolysis, microwaves, radiofrequency, cold plasma, UV-light); acoustic technologies (ultrasound, shockwaves); innovative chemical processing technologies (ozone, chlorine dioxide, electrolysis, oxidized water) and others like membrane filtration and dense phase CO2. The title also focuses on understanding the effects of such processing technologies on inactivation of the most relevant pathogenic and spoilage microorganisms to ensure food safety and stability. Over the course of the 20th century, the interest and demand for the development and application of new food preservation methods has increased significantly. The research in the last 50 years has produced various innovative food processing technologies and the use of new technologies for inactivation of spoilage and/or pathogenic microorganisms will depend on several factors. At this stage of development there is a need to better understand the mechanisms that govern microbial inactivation as induced by new and innovative processing technologies, as well as suitable and effective conditions for inactivating the microorganism. - Serves as a summary of relevant spoilage and pathogenic microorganisms for different foods as influenced by the application of innovative technologies for their preservation - Provides readers with an in-depth understanding on how effective innovative processing technologies are for controlling spoilage and pathogenic microorganisms in different foods - Integrates concepts in order to find the optimum conditions for microbial inactivation and preservation of major and minor food compounds
This book provides readers with a comprehensive overview of cold plasma technology for tackling the various food-related hazards in a wide range of food sectors. The principles and characteristics of cold plasma generation in gas and its interaction with liquids, as well as its combating modes of action for common hazards (e.g., bacteria, spores, biofilms, fungi, and fungal toxins) are emphasized in this book. It also presents the applications of cold plasma or its hurdles with other techniques to assure the microbiological safety of the key food classifications, including fruits, vegetables, cereals, grains, meat, aquatic products, liquid food products (e.g., juices, milk), nuts, spices, herbs, and food packaging. This book is useful for researchers to grasp the comprehensive understandings of how food safety can be controlled with cold plasma technology. This book also provides adequate information for engineers in food industry for better development and optimization of the plasma-generating systems. Government institutions that are responsible for food safety regulations can understand more knowledge about the intricacies and influencing factors, which should be considered for regulating the applications of cold plasma technology in food.
Ultrasound is an emerging technology that has been widely explored in food science and technology since the late 1990s. The book is divided into three main areas.Chapters 1 to 5 focus on the basic principles of ultrasound and how the technology works on microbial cells, enzymes, and the chemistry behind the process. Chapters 6 to 15 cover the application of ultrasound in specific food products and processes, discussing changes on food quality and presenting some innovations in food ingredients and enhancement of unit operations. Finally, Chapters 16 to 20 present some topics about manufacture of ultrasound equipment and simulation of the process, the use of the technology to treat food industry wastewater, and an industry perspective. The laws and regulations concerning emerging technologies, such as ultrasound, are also discussed, including the new Food Safety Modernization Act.
FOOD CHEMISTRY A unique book detailing the impact of food adulteration, food toxicity and packaging on our nutritional balance, as well as presenting and analyzing technological advancements such as the uses of green solvents with sensors for non-destructive quality evaluation of food. Food Chemistry: The Role of Additives, Preservatives and Adulteration is designed to present basic information on the composition of foods and the chemical and physical changes that their characteristics undergo during processing, storage, and handling. Details concerning recent developments and insights into the future of food chemical risk analysis are presented, along with topics such as food chemistry, the role of additives, preservatives, and food adulteration, food safety objectives, risk assessment, quality assurance, and control. Moreover, good manufacturing practices, food processing systems, design and control, and rapid methods of analysis and detection are covered, as well as sensor technology, environmental control, and safety. The book also presents detailed information about the chemistry of each major class of food additive and their multiple functionalities. In addition, numerous recent findings are covered, along with an explanation of how their quality is ascertained and consumer safety ensured. Audience The core audience of this book include food technologists, food chemists, biochemists, biotechnologists, food, and beverage technologists, and nanoscientists working in the field of food chemistry, food technology, and food and nanoscience. In addition, R&D experts, researchers in academia and industry working in food science/safety, and process engineers in industries will find this book extremely valuable.
The latest research on the health benefits and optimal processing technologies of herbs and spices This book provides a comprehensive overview of the health benefits, analytical techniques used, and effects of processing upon the physicochemical properties of herbs and spices. Presented in three parts, it opens with a section on the technological and health benefits of herbs and spices. The second part reviews the effect of classical and novel processing techniques on the properties of herbs/spices. The third section examines extraction techniques and analytical methodologies used for herbs and spices. Filled with contributions from experts in academia and industry, Herbs, Spices and Medicinal Plants: Processing, Health Benefits and Safety offers chapters covering thermal and non-thermal processing of herbs and spices, recent developments in high-quality drying of herbs and spices, conventional and novel techniques for extracting bioactive compounds from herbs and spices, and approaches to analytical techniques. It also examines purification and isolation techniques for enriching bioactive phytochemicals, medicinal properties of herbs and spices, synergy in whole-plant medicine, potential applications of polyphenols from herbs and spices in dairy products, biotic and abiotic safety concerns, and adverse human health effects and regulation of metal contaminants in terrestrial plant-derived food and phytopharmaceuticals. Covers the emerging health benefits of herbs and spices, including their use as anti-diabetics, anti-inflammatories, and anti-oxidants Reviews the effect of classical and novel processing techniques on the properties of herbs and spices Features informed perspectives from noted academics and professionals in the industry Part of Wiley's new IFST Advances in Food Science series Herbs, Spices and Medicinal Plants is an important book for companies, research institutions, and universities active in the areas of food processing and the agri-food environment. It will appeal to food scientists and engineers, environmentalists, and food regulatory agencies.
Food processing technologies are an essential link in the food chain. These technologies are many and varied, changing in popularity with changing consumption patterns and product popularity. Newer process technologies are also being evolved to provide the added advantages. Conventional and Advanced Food Processing Technologies fuses the practical (application, machinery), theoretical (model, equation) and cutting-edge (recent trends), making it ideal for industrial, academic and reference use. It consists of two sections, one covering conventional or well-established existing processes and the other covering emerging or novel process technologies that are expected to be employed in the near future for the processing of foods in the commercial sector. All are examined in great detail, considering their current and future applications with added examples and the very latest data. Conventional and Advanced Food Processing Technologies is a comprehensive treatment of the current state of knowledge on food processing technology. In its extensive coverage, and the selection of reputed research scientists who have contributed to each topic, this book will be a definitive text in this field for students, food professionals and researchers.
This book addresses the future development of ultrasound in food processing, covering both High Power (material altering) and Low Power (non-destructive testing) applications. Leading work is presented for a non-expert audience, so that people in industry and academia can make informed decisions about future research and the adoption of ultrasound techniques. It will be of particular interest to food manufacturing personnel responsible for process development, engineering and research. It will be invaluable for scientists and technologists involved in active ultrasound research and instrument manufacture.
Emerging Methods for Oil Extraction from Food Processing Waste is a comprehensive and cutting-edge exploration of sustainable oil extraction practices, catering to professionals and researchers in food science. The book, spanning 13 insightful chapters, intricately reviews the extraction of oil from food processing by-products, including pomace and surplus raw materials. It specifically focuses on emerging non-thermal technologies, offering valuable insights into improving oil extraction rates. The discussions encompass factors influencing extraction rates and suggest processing conditions based on various extraction methods and raw materials. In addition to providing a nuanced understanding of conventional and novel extraction techniques, the text delves into the diverse applications of the extracted oil, ranging from food preservation to fortification and fat replacement. Notably, it covers advanced processing techniques for enhancing oil stability, bioavailability, and bioactivity through emulsion and encapsulation methods. Addressing crucial commercial aspects, the text explores economic feasibility, safety considerations, and consumer acceptability, providing a holistic perspective for successful industrial adaptation. Authored by global specialists, each chapter offers in-depth scientific reports and critical analyses, making this volume an indispensable resource for continuous research and advancement in the dynamic field of food processing.