Download Free Advances In Breeding For Quantitative Disease Resistance Book in PDF and EPUB Free Download. You can read online Advances In Breeding For Quantitative Disease Resistance and write the review.

This book is open access under a CC BY 4.0 license. By 2050, human population is expected to reach 9.7 billion. The demand for increased food production needs to be met from ever reducing resources of land, water and other environmental constraints. Rice remains the staple food source for a majority of the global populations, but especially in Asia where ninety percent of rice is grown and consumed. Climate change continues to impose abiotic and biotic stresses that curtail rice quality and yields. Researchers have been challenged to provide innovative solutions to maintain, or even increase, rice production. Amongst them, the ‘green super rice’ breeding strategy has been successful for leading the development and release of multiple abiotic and biotic stress tolerant rice varieties. Recent advances in plant molecular biology and biotechnologies have led to the identification of stress responsive genes and signaling pathways, which open up new paradigms to augment rice productivity. Accordingly, transcription factors, protein kinases and enzymes for generating protective metabolites and proteins all contribute to an intricate network of events that guard and maintain cellular integrity. In addition, various quantitative trait loci associated with elevated stress tolerance have been cloned, resulting in the detection of novel genes for biotic and abiotic stress resistance. Mechanistic understanding of the genetic basis of traits, such as N and P use, is allowing rice researchers to engineer nutrient-efficient rice varieties, which would result in higher yields with lower inputs. Likewise, the research in micronutrients biosynthesis opens doors to genetic engineering of metabolic pathways to enhance micronutrients production. With third generation sequencing techniques on the horizon, exciting progress can be expected to vastly improve molecular markers for gene-trait associations forecast with increasing accuracy. This book emphasizes on the areas of rice science that attempt to overcome the foremost limitations in rice production. Our intention is to highlight research advances in the fields of physiology, molecular breeding and genetics, with a special focus on increasing productivity, improving biotic and abiotic stress tolerance and nutritional quality of rice.
Human population is escalating at an enormous pace and is estimated to reach 9.7 billion by 2050. As a result, there will be an increase in demand for agricultural production by 60–110% between the years 2005 and 2050 at the global level; the number will be even more drastic in the developing world. Pathogens, animals, and weeds are altogether responsible for between 20 to 40 % of global agricultural productivity decrease. As such, managing disease development in plants continues to be a major strategy to ensure adequate food supply for the world. Accordingly, both the public and private sectors are moving to harness the tools and paradigms that promise resistance against pests and diseases. While the next generation of disease resistance research is progressing, maximum disease resistance traits are expected to be polygenic in nature and controlled by selective genes positioned at putative quantitative trait loci (QTLs). It has also been realized that sources of resistance are generally found in wild relatives or cultivars of lesser agronomic significance. However, introgression of disease resistance traits into commercial crop varieties typically involves many generations of backcrossing to transmit a promising genotype. Molecular marker-assisted breeding (MAB) has been found to facilitate the pre-selection of traits even prior to their expression. To date, researchers have utilized disease resistance genes (R-genes) in different crops including cereals, pulses, and oilseeds and other economically important plants, to improve productivity. Interestingly, comparison of different R genes that empower plants to resist an array of pathogens has led to the realization that the proteins encoded by these genes have numerous features in common. The above observation therefore suggests that plants may have co-evolved signal transduction pathways to adopt resistance against a wide range of divergent pathogens. A better understanding of the molecular mechanisms necessary for pathogen identification and a thorough dissection of the cellular responses to biotic stresses will certainly open new vistas for sustainable crop disease management. This book summarizes the recent advances in molecular and genetic techniques that have been successfully applied to impart disease resistance for plants and crops. It integrates the contributions from plant scientists targeting disease resistance mechanisms using molecular, genetic, and genomic approaches. This collection therefore serves as a reference source for scientists, academicians and post graduate students interested in or are actively engaged in dissecting disease resistance in plants using advanced genetic tools.
Quantitative Trait Loci (QTL) is a topic of major agricultural significance for efficient livestock production. This book covers various statistical methods that have been used or proposed for detection and analysis of QTL and marker-and gene-assisted selection in animal genetics and breeding.
Concern about the environmental consequences of the widespread use of pesticides has increased, and evidence of pesticide-resistant virus vectors have continued to emerge. This volume presents a timely survey of the mechanisms of plant resistance and examines current developments in breeding for resistance, with particular emphasis on advances in genetic engineering which allow for the incorporation of viral genetic material into plants. Discusses the mechanisms of innate resistance in strains of tobacco, tomato, and cowpea; various aspects of induced resistance, including the characterization and roles of the pathogenesis-related proteins; antiviral substances and their comparison with interferon; and cross-protection between plant virus strains. Also presents several papers which evaluate the status of genetic engineering as it relates to breeding resistant plants. Among these are discussions of the potential use of plant viruses as gene vectors, gene coding for viral coat protein, satellite RNA, and antisense RNA, and practical issues such as the durability of resistant crop plants in the field.
In the tradition of Silent Spring, Raoul Robinson's Return to Resistance calls for a revolution. Traditional plant breeding techniques have led us to depend more and more on chemical pesticides to protect ourcrops. Return to Resistance shows gardeners, farmers, and plant breeders how to use a long-neglected technique to create hardy new plant varieties that are naturally resistant to pests and disease. Horizontal resistance breeding has been largely ignored in this century due to the popularity and apparent successes of the Mendelian geneticists. However the colossal, unrecognized failure of m.
Addressing principles associated with breeding animals for enhanced health and resistance to specific diseases, this book provides a review of the field illustrated with examples covering many diseases of importance to livestock production, across all major livestock species. Authored by experts in the field, this updated edition covers techniques and approaches, viruses, TSEs, bacteria, parasites, vectors, and broader health issues seen in production systems, including metabolic diseases. The book will be an essential reference for professionals in the field, scientists and researchers, students, breeders, veterinarians, agricultural advisors and policy makers.
This second edition volume discusses the revolutionary development of faster and less expensive DNA sequencing technologies from the past 10 years and focuses on general technologies that can be utilized by a wide array of plant biologists to address specific questions in their favorite model systems. This book is organized into five parts. Part I examines the tools and methods required for identifying epigenetic and conformational changes at the whole-genome level. Part II presents approaches used to determine key aspects of a gene’s function, such as techniques used to identify and characterize gene regulatory networks. This is followed by a discussion of tools used to analyze the levels of mRNA, mRNA translation rates and metabolites. Part III features a compilation of forward and reverse genetic approaches that include recent implementation of high-throughput sequencing in classical methodologies such as QTL mapping. The final two parts explore strategies to facilitate and accelerate the generation and testing of functional DNA elements and basic computational tools used to facilitate the use of systems biology approached by a broad spectrum of plant researchers. Written in the highly successful Methods of Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and key tips on troubleshooting and avoiding known pitfalls. Practical and timely, Plant Functional Genomics: Methods and Protocols, Second Edition highlights the latest developments in DNA sequencing technologies that are likely to continue shaping the future of functional genomics.