Download Free Advances In Ascochyta Research Book in PDF and EPUB Free Download. You can read online Advances In Ascochyta Research and write the review.

Legume crops provide an excellent source of high quality plant protein and have a key role in arable crop rotations reducing the need for fertilizer application and acting as break-crops. However, these crops are affected by a number of foliar and root diseases, being ascochyta blights the most important group of diseases worldwide. Ascochyta blights are incited by different pathogens in the various legumes. A number of control strategies have been developed including resistance breeding, cultural practices and chemical control. However, only marginal successes have been achieved in most instances, most control methods being uneconomical, hard to achieve or resulting in incomplete protection. This eBook covers recent advances in co-operative research on these diseases, from agronomy to breeding, covering traditional and modern genomic methodologies.
Ascochyta blights consistently affect large areas of grain legume production (pea, lentil, chickpea and faba bean) in all countries where they are cultivated. These diseases are capable of causing large yield losses. This book considers the state-of-the-art by taking a comparative approach of Ascochyta blight diseases of cool season food and feed legumes. Topics considered are pathogen diversity, legume genetics and breeding, and integrated disease management.
​​​This book is devoted to grain legumes and include eight chapters devoted to the breeding of specific grain legume crops and five general chapters dealing with important topics which are common to most of the species in focus. Soybean is not included in the book as it is commonly considered an oil crop more than a grain legume and is included in the Oil Crops Volume of the Handbook of Plant Breeding.​Legume species belong to the Fabaceae family and are characterized by their fruit, usually called pod. Several species of this family were domesticated by humans, such as soybean, common bean, faba bean, pea, chickpea, lentil, peanut, or cowpea. Some of these species are of great relevance as human and animal food. Food legumes are consumed either by their immature pod or their dry seeds, which have a high protein content. Globally, grain legumes are the most relevant source of plant protein, especially in many countries of Africa and Latin America, but there are some constraints in their production, such as a poor adaptation, pest and diseases and unstable yield. Current research trends in Legumes are focused on new methodologies involving genetic and omic studies, as well as new approaches to the genetic improvement of these species, including the relationships with their symbiotic rhizobia.
Cowpea: taxonomy, genetics, and breeding, physiology and agronomy, diseases and parasitic weeds, insect pests, postharvest technology and utilization. Biotechnological applications.
Edited by J.A. Callow and supported by an international Editorial Board, Advances in Botanical Research publishes in-depth and up-to-date reviews on a wide range of topics in plant sciences. Currently in its 42nd volume, the series features a wide range of reviews by recognized experts on all aspects of plant pathology, physiology and ecology. This eclectic volume features five reviews on cutting-edge topics of interest to incorporate advances in plant pathology. - Includes most advanced reviews by distinguished researchers - Covers topics such as the impact of molecular data in fungal systematics and chloroplast control of nuclear gene expression
This book sheds new light on the chickpea genome sequencing and resequencing of chickpea germplasm lines and provides insights into classical genetics, cytogenetics, and trait mapping. It also offers an overview of the latest advances in genome sequencing and analysis. The growing human population, rapid climate changes and limited amounts of arable land are creating substantial challenges in connection with the availability and affordability of nutritious food for smallholder farmers in developing countries. In this context, climate smart crops are essential to alleviating the hunger of the millions of poor and undernourished people living in developing countries. In addition to cereals, grain legumes are an integral part of the human diet and provide sustainable income for smallholder farmers in the arid and semi-arid regions of the world. Among grain legumes, the chickpea (Cicer arietinum) is the second most important in terms of production and productivity. Besides being a rich source of proteins, it can fix atmospheric nitrogen through symbiosis with rhizobia and increase the input of combined nitrogen. Several abiotic stresses like drought, heat, salinity, together with biotic stresses like Fusarium wilt, Ascochyta blight, and Botrytis grey mould have led to production losses, as the chickpeas is typically grown in the harsh climates of our planet’s semi-arid regions.
Thiazoles—Advances in Research and Application: 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Thiazoles. The editors have built Thiazoles—Advances in Research and Application: 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Thiazoles in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Thiazoles—Advances in Research and Application: 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Chickpea: Crop Wild Relatives for Enhancing Genetic Gains explores aspects related to critical analysis on factors responsible for narrow genetic base of chickpea productions including domestication bottleneck, the level of diversity present in different cultivated and wild species, the uniqueness and usefulness of potential gene sources available and maintained in production systems across the globe, the level of genetic erosion both at landrace and species level over time and space etc. Despite considerable international investment in conventional breeding, production of chickpea has not yet been significantly improved beyond that achieved through its normal single domestication event and high self-pollination rate. Total annual pulse production of ~12 million tons (FAO 2016) is far below actual potential. Susceptibility to both biotic and abiotic stresses have created a production level bottleneck whose solution possibly lies in the use of crop wild relatives and other genetic traits cultivated by tailoring novel germplasm. Presenting options for widening the genetic base of chickpea cultivars by introgression of diverse genes available in distantly related wild Cicer taxa, thus expanding the genetic base and maximize genetic gains from the selection, it is necessary to accumulate other complimentary alleles from CWRs. This review will focus on present status of gene pool and species distribution, germplasm conservation, characterization and evaluation, problems associated with crop production, sources of target traits available in wild species, status of trait introgression in synthesizing new gene pool of chickpea along with progress made in chickpea genomics. An edited book with contributions from leading scientists, this information will guide and inform chickpea breeders, PGR researchers and crop biologists across the world. - Presents both conventional and emerging techniques - Provides insights into gene pyramiding as cytogenic manipulations - Includes case studies highlighting the impact of improving chickpea production
​In recent years there has been significant attention paid on the endophytic research by various groups working within this domain. Mutualistic endophytic microbes with an emphasis on the relatively understudied fungal endophytes are the focus of this special book. Plants are associated with micro-organisms: endophytic bacteria and fungi, which live inter- and intra-cellularly without inducing pathogenic symptoms, but have active biochemical and genetic interactions with their host. Endophytes play vital roles as plant growth promoters, biocontrol agents, biosurfactant producers, enzymes and secondary metabolite producers, as well as providing a new hidden repertoire of bioactive natural products with uses in pharmaceutical, agrochemical and other biotechnological applications. The increasing interest in endophytic research generates significant progress in our understanding of the host-endophyte relationship at molecular and genetic level. The bio-prospection of microbial endophytes has led to exciting possibilities for their biotechnological application as biocontrol agent, bioactive metabolites, and other useful traits. Apart from these virtues, the microbial endophytes may be adapted to the complex metabolism of many desired molecules that can be of significant industrial applications. These microbes can be a useful alternative for sustainable solutions for ecological control of pests and diseases, and can reduce the burden of excess of chemical fertilizers for this purpose. This book is an attempt to review the recent development in the understanding of microbial endophytes and their potential biotechnological applications. This is a collection of literature authored by noted researchers having signatory status in endophytic research and summarizes the development achieved so far, and future prospects for further research in this fascinating area of research.