Download Free Advancements In Non Conventional Cooling And Thermal Storage Strategies Book in PDF and EPUB Free Download. You can read online Advancements In Non Conventional Cooling And Thermal Storage Strategies and write the review.

An exploration of the technical, economic, and energy-saving aspects of the design, modeling, and operation of non-conventional cooling and heating systems Cooling and heating can collectively constitute one of the largest sources of energy consumption in a modern building, with attendant costs and sustainability concerns. As the global climate changes and temperature extremes produce demand for even greater energy consumption, energy-efficient methods for cooling interior spaces have become more important than ever. Our sustainable future demands non-conventional methods for cooling and thermal storage which can meet the demands of a changing climate and an efficient, renewable power grid. Advancements in Non-Conventional Cooling and Thermal Storage Strategies offers a detailed introduction to the latest cutting-edge space conditioning technologies for buildings. Beginning with an overview of activated carbon-based adsorbents and their potential heating and cooling applications, it moves to an analysis of Phase Change Materials (PCMs) as a potential sustainable cooling source. Thorough, rigorous, and fully up to date, it’s indispensable for a range of professionals working to make habitable, energy-efficient human spaces. Advancements in Non-Conventional Cooling and Thermal Storage Strategies readers will find: Techniques for both active and passive space conditioning systems Detailed discussion of topics including adsorbent-refrigerant pairings, techniques for incorporating fresh air at high air change per hour, and more A composite case study with examples from across the globe to provide an understanding of technical requirements Advancements in Non-Conventional Cooling and Thermal Storage Strategies is ideal for researchers and professional mechanical and civil engineers, those working in space-cooling, HVAC, and building design industries, and research and design personnel of HVAC equipment manufacturing industry.
The ability of thermal energy storage (TES) systems to facilitate energy savings, renewable energy use and reduce environmental impact has led to a recent resurgence in their interest. The second edition of this book offers up-to-date coverage of recent energy efficient and sustainable technological methods and solutions, covering analysis, design and performance improvement as well as life-cycle costing and assessment. As well as having significantly revised the book for use as a graduate text, the authors address real-life technical and operational problems, enabling the reader to gain an understanding of the fundamental principles and practical applications of thermal energy storage technology. Beginning with a general summary of thermodynamics, fluid mechanics and heat transfer, this book goes on to discuss practical applications with chapters that include TES systems, environmental impact, energy savings, energy and exergy analyses, numerical modeling and simulation, case studies and new techniques and performance assessment methods.
Solar Heating and Cooling Systems: Fundamentals, Experiments and Applications provides comprehensive coverage of this modern energy issue from both a scientific and technical level that is based on original research and the synthesis of consistent bibliographic material that meets the increasing need for modernization and greater energy efficiency to significantly reduce CO2 emissions. Ioan Sarbu and Calin Sebarchievici present a comprehensive overview of all major solar energy technologies, along with the fundamentals, experiments, and applications of solar heating and cooling systems. Technical, economic, and energy saving aspects related to design, modeling, and operation of these systems are also explored. This reference includes physical and mathematical concepts developed to make this publication a self-contained and up-to-date source of information for engineers, researchers, and professionals who are interested in the use of solar energy as an alternative energy source. Includes learning aims, chapter summaries, problems and solutions to support the theories presented Puts a specific emphasis on the practical application of the technologies in heating and cooling systems Contains calculating equations for the energy and economic index of solar systems
"This book will be beneficial for students, researchers and scientists working in the field of green energy systems. In the last few decades, green energy technologies have gained significant interest. The increase of heat transfer in green energy technologies is one of the most important concerns in energy collection, energy storage, energy utilization, energy conservation, and optimum design. Since nanofluids/nano-enhanced phase change materials are used to increase heat transfer characteristics and thermal properties compared to conventional fluids/phase change materials, the performance of green energy technologies can be improved. These novel strategies are gaining interest to researchers and authors in recent years. This book presents the various applications of nanofluids, hybrid nanofluids, and nano-enhanced phase change materials in green energy technologies such as solar thermal energy storage, photovoltaic/thermal systems, tracking and non-tracking solar collectors, solar thermal power plant, and wind turbine cooling systems. The thermophysical properties of the nanofluids and nano-enhanced phase change materials are also presented. This book also overviews the challenges and opportunities in implementing the nanofluids/nano-enhanced phase change materials application in green energy technologies"--
This Intergovernmental Panel on Climate Change Special Report (IPCC-SRREN) assesses the potential role of renewable energy in the mitigation of climate change. It covers the six most important renewable energy sources - bioenergy, solar, geothermal, hydropower, ocean and wind energy - as well as their integration into present and future energy systems. It considers the environmental and social consequences associated with the deployment of these technologies, and presents strategies to overcome technical as well as non-technical obstacles to their application and diffusion. SRREN brings a broad spectrum of technology-specific experts together with scientists studying energy systems as a whole. Prepared following strict IPCC procedures, it presents an impartial assessment of the current state of knowledge: it is policy relevant but not policy prescriptive. SRREN is an invaluable assessment of the potential role of renewable energy for the mitigation of climate change for policymakers, the private sector, and academic researchers.
Renewable Heating and Cooling: Technologies and Applications presents the latest information on the generation of heat for industry and domestic purposes, an area where a significant proportion of total energy is consumed. In Europe, this figure is estimated to be almost 50%, with the majority of heat generated by the consumption of fossil fuels. As there is a pressing need to increase the uptake of renewable heating and cooling (RHC) to reduce greenhouse gas emissions, this book provides a comprehensive and authoritative overview on the topic. Part One introduces key RHC technologies and discusses RHC in the context of global heating and cooling demand, featuring chapters on solar thermal process heat generation, deep geothermal energy, and solar cooling technologies. Part Two explores enabling technologies, special applications, and case studies with detailed coverage of thermal energy storage, hybrid systems, and renewable heating for RHC, along with case studies in China and Sweden. Users will find this book to be an essential resource for lead engineers and engineering consultants working on renewable heating and cooling in engineering companies, as well as academics and R&D professionals in private research institutes who have a particular interest in the subject matter. Includes coverage on biomass, solar thermal, and geothermal renewable heating and cooling technologies Features chapters on solar thermal process heat generation, deep geothermal energy, solar cooling technologies, and special applications Presents case studies with detailed coverage of thermal energy storage, hybrid systems, and renewable heating for RHC Explores enabling technologies and special applications
Buildings are the largest energy consuming sector in the world, and account for over one-third of total final energy consumption and an equally important source of carbon dioxide (CO2) emissions. Achieving significant energy and emissions reduction in the buildings sector is a challenging but achievable policy goal. Transition to Sustainable Buildings presents detailed scenarios and strategies to 2050, and demonstrates how to reach deep energy and emissions reduction through a combination of best available technologies and intelligent public policy. This IEA study is an indispensible guide for decision makers, providing informative insights on: cost-effective options, key technologies and opportunities in the buildings sector; solutions for reducing electricity demand growth and flattening peak demand; effective energy efficiency policies and lessons learned from different countries; future trends and priorities for ASEAN, Brazil, China, the European Union, India, Mexico, Russia, South Africa and the United States; implementing a systems approach using innovative products in a cost effective manner; and pursuing whole-building (e.g. zero energy buildings) and advanced-component policies to initiate a fundamental shift in the way energy is consumed.
The world is currently undergoing an historic energy transition, driven by increasingly stringent decarbonisation policies and rapid advances in low-carbon technologies. The large-scale shift to low-carbon energy is disrupting the global energy system, impacting whole economies, and changing the political dynamics within and between countries. This open access book, written by leading energy scholars, examines the economic and geopolitical implications of the global energy transition, from both regional and thematic perspectives. The first part of the book addresses the geopolitical implications in the world’s main energy-producing and energy-consuming regions, while the second presents in-depth case studies on selected issues, ranging from the geopolitics of renewable energy, to the mineral foundations of the global energy transformation, to governance issues in connection with the changing global energy order. Given its scope, the book will appeal to researchers in energy, climate change and international relations, as well as to professionals working in the energy industry.
Over the past decade, important advances have been made in the development of nanostructured materials for solid state hydrogen storage used to supply hydrogen to fuel cells in a clean, inexpensive, safe and efficient manner. Nanomaterials for Solid State Hydrogen Storage focuses on hydrogen storage materials having high volumetric and gravimetric hydrogen capacities, and thus having the highest potential of being applied in the automotive sector. Written by leading experts in the field, Nanomaterials for Solid State Hydrogen Storage provides a thorough history of hydrides and nanomaterials, followed by a discussion of existing fabrication methods. The authors’ own research results in the behavior of various hydrogen storage materials are also presented. Covering fundamentals, extensive research results and recent advances in nanomaterials for solid state hydrogen storage, this book serves as a comprehensive reference.
This book is devoted to the analysis and applications of energy, exergy, and environmental issues in all sectors of the economy, including industrial processes, transportation, buildings, and services. Energy sources and technologies considered are hydrocarbons, wind and solar energy, fuel cells, as well as thermal and electrical storage. This book provides theoretical insights, along with state-of-the-art case studies and examples and will appeal to the academic community, but also to energy and environmental professionals and decision makers.