Download Free Advanced Optical Spectroscopy Techniques For Semiconductors Book in PDF and EPUB Free Download. You can read online Advanced Optical Spectroscopy Techniques For Semiconductors and write the review.

This book focuses on advanced optical spectroscopy techniques for the characterization of cutting-edge semiconductor materials. It covers a wide range of techniques such as Raman, infrared, photoluminescence, and cathodoluminescence (CL) spectroscopy, including an introduction to their physical fundamentals and best operating principles. Aimed at professionals working in the research and development of semiconductors and semiconductor materials, this book looks at a broad class of materials such as silicon and silicon dioxide, nano-diamond thin films, quantum dots, and gallium oxide. In addition to the spectroscopic techniques covered, this book features a chapter devoted to the use of a scanning electron transmission microscope as an excitation source for CL spectroscopy. Written by a practicing industry expert in the field, this book is an ideal source of reference and best-practices guide for physicists, as well as materials scientists and engineers involved in the area of spectroscopy of semiconductor materials. Further, this book introduces the cutting-edge spectroscopy such as optical photothermal IR and Raman spectroscopy or terahertz time-domain spectroscopy (THz-TDS) etc.
This book focuses on advanced optical spectroscopy techniques for the characterization of cutting-edge semiconductor materials. It covers a wide range of techniques such as Raman, infrared, photoluminescence, and cathodoluminescence (CL) spectroscopy, including an introduction to their physical fundamentals and best operating principles. Aimed at professionals working in the research and development of semiconductors and semiconductor materials, this book looks at a broad class of materials such as silicon and silicon dioxide, nano-diamond thin films, quantum dots, and gallium oxide. In addition to the spectroscopic techniques covered, this book features a chapter devoted to the use of a scanning electron transmission microscope as an excitation source for CL spectroscopy. Written by a practicing industry expert in the field, this book is an ideal source of reference and best-practices guide for physicists, as well as materials scientists and engineers involved in the area of spectroscopy of semiconductor materials. Further, this book introduces the cutting-edge spectroscopy such as optical photothermal IR and Raman spectroscopy or terahertz time-domain spectroscopy (THz-TDS) etc.
With chapters written by pioneering experts in various optical techniques, this comprehensive reference provides detailed descriptions of basic and advanced optical techniques commonly used to study materials, from the simple to the complex. It explains how to use the techniques to acquire, analyze, and interpret data for gaining insight into ma
Raman Scattering on Emerging Semiconductors and Oxides presents Raman scattering studies. It describes the key fundamental elements in applying Raman spectroscopies to various semiconductors and oxides without complicated and deep Raman theories. Across nine chapters, it covers: • SiC and IV-IV semiconductors, • III-GaN and nitride semiconductors, • III-V and II-VI semiconductors, • ZnO-based and GaO-based semiconducting oxides, • Graphene, ferroelectric oxides, and other emerging materials, • Wide-bandgap semiconductors of SiC, GaN, and ZnO, and • Ultra-wide gap semiconductors of AlN, Ga2O3, and graphene. Key achievements from the author and collaborators in the above fields are referred to and cited with typical Raman spectral graphs and analyses. Written for engineers, scientists, and academics, this comprehensive book will be fundamental for newcomers in Raman spectroscopy. Zhe Chuan Feng has had an impressive career spanning many years of important work in engineering and tech, including as a professor at the Graduate Institute of Photonics & Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei; establishing the Science Exploring Lab; joining Kennesaw State University as an adjunct professor, part-time; and at the Department of Electrical and Computer Engineering, Southern Polytechnic College of Engineering and Engineering Technology. Currently, he is focusing on materials research for LED, III-nitrides, SiC, ZnO, other semiconductors/oxides, and nanostructures and has devoted time to materials research and growth of III-V and II-VI compounds, LED, III nitrides, SiC, ZnO, GaO, and other semiconductors/oxides. Professor Feng has also edited and published multiple review books in his field, alongside authoring scientific journal papers and conference/proceeding papers. He has organized symposiums and been an invited speaker at different international conferences and universities. He has also served as a guest editor for special journal issues.
The field of semiconductor nanostructures is of enormous and still-growing research interest. On one hand, they are already realized in mass products such as high-electron-mobility field-effect transistors and quantum-well lasers. On the other hand, they allow, in specially tailored systems, the investigation of fundamental properties such as many-particle interactions of electrons in reduced dimensions. This book bridges the gap between general semiconductor textbooks and research articles.
This book reviews up-to-date ideas of how the luminescence radiation in semiconductors originates and how to analyze it experimentally. The book fills a gap between general textbooks on optical properties of solids and specialized monographs on luminescence. It is unique in its coherent treatment of the phenomenon of luminescence from the very introductory definitions, from light emission in bulk crystalline and amorphous materials to the advanced chapters that deal with semiconductor nano objects, including spectroscopy of individual nanocrystals. The theory of radiative recombination channels in semiconductors is considered on a level of intuitive physical understanding rather than rigorous quantum mechanical treatment. The book is based on teaching and written in the style of a graduate text with plenty of tutorial material, illustrations, and problem sets at chapter ends. It is designed predominantly for students in physics, optics, optoelectronics and materials science.
This book introduces the wider field of functional nanomaterials sciences, with a strong emphasis on semiconductor photonics. Whether you are studying photonic quantum devices or just interested in semiconductor nanomaterials and their benefits for optoelectronic applications, this book offers you a pedagogical overview of the relevant subjects along with topical reviews. The book discusses different yet complementary studies in the context of ongoing international research efforts, delivering examples from both fundamental and applied research to a broad readership. In addition, a hand-full of useful optical techniques for the characterization of semiconductor quantum structures and materials are addressed. Moreover, nanostructuring methods for the production of low-dimensional systems, which exhibit advantageous properties predominantly due to quantum effects, are summarized. Science and engineering professionals in the interdisciplinary domains of nanotechnology, photonics, materials sciences, and quantum physics can familiarize themselves with selected highlights with eyes towards photonic applications in the fields of two-dimensional materials research, light–matter interactions, and quantum technologies.
This book explains different magnetic resonance (MR) techniques and uses different combinations of these techniques to analyze defects in semiconductors and nanostructures. It also introduces novelties such as single defects MR and electron-paramagnetic-resonance-based methods: electron spin echo, electrically detected magnetic resonance, optically detected magnetic resonance and electron-nuclear double resonance – the designated tools for investigating the structural and spin properties of condensed systems, living matter, nanostructures and nanobiotechnology objects. Further, the authors address problems existing in semiconductor and nanotechnology sciences that can be resolved using MR, and discuss past, current and future applications of MR, with a focus on advances in MR methods. The book is intended for researchers in MR studies of semiconductors and nanostructures wanting a comprehensive review of what has been done in their own and related fields of study, as well as future perspectives.
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.
Comprehensive text and reference covers all phenomena involving light in semiconductors, emphasizing modern applications in semiconductor lasers, electroluminescence, photodetectors, photoconductors, photoemitters, polarization effects, absorption spectroscopy, more. Numerous problems. 339 illustrations.