Download Free Advanced Nuclear Systems Consuming Excess Plutonium Book in PDF and EPUB Free Download. You can read online Advanced Nuclear Systems Consuming Excess Plutonium and write the review.

A survey of recent developments in the field of plutonium disposal by the application of advanced nuclear systems, both critical and subcritical. Current national R&D plans are summarized. The actinide-fuelled critical reactors are associated with control problems, since they tend to have a small delayed neutron fraction coupled with a small Doppler effect and a positive void coefficient. Current thinking is turning to accelerator-driven subcritical systems for the transmutation of actinides. The book's conclusion is that the various systems proposed are technically feasible, even though not yet technically mature. The book presents a unique summary and evaluation of all relevant possibilities for burning surplus plutonium, presented by experts from a variety of different disciplines and interests, including the defence establishment. The obvious issue - the non-proliferation of nuclear weapons - is vital, but the matter represents a complex technological challenge that also requires an assessment in economic terms.
Distributed to some depository libraries in microfiche.
As part of the U.S. effort to evaluate technologies offering solutions for the safe disposal or utilization of surplus nuclear materials, the fiscal year 1993 Energy and Water Appropriations legislation provided the Department of Energy (DOE) the necessary funds to conduct multi-phased studies to determine the technical feasibility of using reactor technologies for the triple mission of burning weapons grade plutonium, producing tritium for the existing smaller weapons stockpile, and generating commercial electricity. DOE limited the studies to five advanced reactor designs. Among the technologies selected is the ABB-Combustion Engineering (ABB-CE) System 80+. The DOE study, currently in Phase ID, is proceeding with a more detailed evaluation of the design's capability for plutonium disposition.
Within the next decade, many thousands of U.S. and Russian nuclear weapons are slated to be retired as a result of nuclear arms reduction treaties and unilateral pledges. Hundreds of tons of plutonium and highly enriched uranium will no longer be needed for weapons purposes and will pose urgent challenges to international security. This is the supporting volume to a study by the Committee on International Security and Arms Control which dealt with all phases of the management and disposition of these materials. This technical study concentrates on the option for the disposition of plutonium, looking in detail at the different types of reactors in which weapons plutonium could be burned and at the vitrification of plutonium, and comparing them using economic, security and environmental criteria.
As part of the U.S. effort to evaluate technologies offering solutions for the safe disposal or utilization of surplus nuclear materials, the fiscal year 1993 Energy and Water Appropriations legislation provided the Department of Energy (DOE) the necessary funds to conduct multi-phased studies to determine the technical feasibility of using reactor technologies for the triple mission of burning weapons grade plutonium, producing tritium for the existing smaller weapons stockpile, and generating commercial electricity. DOE limited the studies to five advanced reactor designs. Among the technologies selected is the ABB-Combustion Engineering (ABB-CE) System 80+. The DOE study, currently in Phase ID, is proceeding with a more detailed evaluation of the design's capability for plutonium disposition.
The United States has no program to investigate advanced nuclear fuel cycles for the large-scale consumption of plutonium from military and civilian sources. The official U.S. position has been to focus on means to bury spent nuclear fuel from civilian reactors and to achieve the spent fuel standard for excess separated plutonium, which is considered by policy makers to be an urgent international priority. Recently, the National Research Council published a long awaited report on its study of potential separation and transmutation technologies (STATS), which concluded that in the nuclear energy phase-out scenario that they evaluated, transmutation of plutonium and long-lived radioisotopes would not be worth the cost. However, at the American Nuclear Society Annual Meeting in June, 1996, the STATS panelists endorsed further study of partitioning to achieve superior waste forms for burial, and suggested that any further consideration of transmutation should be in the context of energy production, not of waste management. 2048 The U.S. Department of Energy (DOE) has an active program for the short-term disposition of excess fissile material and a 'focus area' for safe, secure stabilization, storage and disposition of plutonium, but has no current programs for fast reactor development. Nevertheless, sufficient data exist to identify the potential advantages of an advanced fast reactor metallic fuel cycle for the long-term management of plutonium. Advantages are discussed.
This volume is a collection of the papers presented at the International Seminar on Advanced Nuclear Energy Systems toward Zero Release of Radioactive Wastes, which was held in Japan in November 2000. Scientists and engineers working in academia, research organizations and industry came together to discuss the role and contributions of nuclear energy to the environmental issues in the new millennium. It provided a forum for open discussions about the pursuit of solutions for the reduction of nuclear wastes based on the accelerator and fusion technologies, in addition to the advanced fission technology to harmonize the nuclear energy systems with the global environment. It also promoted future international collaboration in the following research fields: the role of nuclear energy in the new millennium; waste management; transmutation of minor actinides and fission products; advanced fission systems, accelerator driven systems, fusion systems, nuclear database, and advanced nuclear fuel cycles for transmutation of wastes. Published originally as a special issue (volume 40/3-4) of the international journal Progress in Nuclear Energy.