Download Free Advanced Logic Synthesis Book in PDF and EPUB Free Download. You can read online Advanced Logic Synthesis and write the review.

This book provides a single-source reference to the state-of-the-art in logic synthesis. Readers will benefit from the authors’ expert perspectives on new technologies and logic synthesis, new data structures, big data and logic synthesis, and convergent logic synthesis. The authors describe techniques that will enable readers to take advantage of recent advances in big data techniques and frameworks in order to have better logic synthesis algorithms.
This book covers recent advances in the field of logic synthesis and design, including Boolean Matching, Logic Decomposition, Boolean satisfiability, Advanced Synthesis Techniques and Applications of Logic Design. All of these topics are valuable to CAD engineers working in Logic Design, Logic Optimization, and Verification. Engineers seeking opportunities for optimizing VLSI integrated circuits will find this book as an invaluable reference, since there is no existing book that covers this material in a systematic fashion.
Logic Synthesis and Verification Algorithms is a textbook designed for courses on VLSI Logic Synthesis and Verification, Design Automation, CAD and advanced level discrete mathematics. It also serves as a basic reference work in design automation for both professionals and students. Logic Synthesis and Verification Algorithms is about the theoretical underpinnings of VLSI (Very Large Scale Integrated Circuits). It combines and integrates modern developments in logic synthesis and formal verification with the more traditional matter of Switching and Finite Automata Theory. The book also provides background material on Boolean algebra and discrete mathematics. A unique feature of this text is the large collection of solved problems. Throughout the text the algorithms covered are the subject of one or more problems based on the use of available synthesis programs.
This textbook is intended to serve as a practical guide for the design of complex digital logic circuits such as digital control circuits, network interface circuits, pipelined arithmetic units, and RISC microprocessors. It is an advanced digital logic design textbook that emphasizes the use of synthesizable Verilog code and provides numerous fully worked-out practical design examples including a Universal Serial Bus interface, a pipelined multiply-accumulate unit, and a pipelined microprocessor for the ARM THUMB architecture.
Switching Theory for Logic Synthesis covers the basic topics of switching theory and logic synthesis in fourteen chapters. Chapters 1 through 5 provide the mathematical foundation. Chapters 6 through 8 include an introduction to sequential circuits, optimization of sequential machines and asynchronous sequential circuits. Chapters 9 through 14 are the main feature of the book. These chapters introduce and explain various topics that make up the subject of logic synthesis: multi-valued input two-valued output function, logic design for PLDs/FPGAs, EXOR-based design, and complexity theories of logic networks. An appendix providing a history of switching theory is included. The reference list consists of over four hundred entries. Switching Theory for Logic Synthesis is based on the author's lectures at Kyushu Institute of Technology as well as seminars for CAD engineers from various Japanese technology companies. Switching Theory for Logic Synthesis will be of interest to CAD professionals and students at the advanced level. It is also useful as a textbook, as each chapter contains examples, illustrations, and exercises.
Logic synthesis has become a fundamental component of the ASIC design flow, and Logic Synthesis Using Synopsys® has been written for all those who dislike reading manuals but who still like to learn logic synthesis as practised in the real world. The primary focus of the book is Synopsys Design Compiler®: the leading synthesis tool in the EDA marketplace. The book is specially organized to assist designers accustomed to schematic capture based design to develop the required expertise to effectively use the Compiler. Over 100 `classic scenarios' faced by designers using the Design Compiler have been captured and discussed, and solutions provided. The scenarios are based both on personal experiences and actual user queries. A general understanding of the problem-solving techniques provided will help the reader debug similar and more complicated problems. Furthermore, several examples and dc-shell scripts are provided. Specifically, Logic Synthesis Using Synopsys® will help the reader develop a better understanding of the synthesis design flow, optimization strategies using the Design Compiler, test insertion using the Test Compiler®, commonly used interface formats such as EDIF and SDF, and design re-use in a synthesis-based design methodology. Examples have been provided in both VHDL and Verilog. Audience: Written with CAD engineers in mind to enable them to formulate an effective synthesis-based ASIC design methodology. Will also assist design teams to better incorporate and effectively integrate synthesis with their existing in-house design methodology and CAD tools.
Logic Synthesis Using Synopsys®, Second Edition is for anyone who hates reading manuals but would still like to learn logic synthesis as practised in the real world. Synopsys Design Compiler, the leading synthesis tool in the EDA marketplace, is the primary focus of the book. The contents of this book are specially organized to assist designers accustomed to schematic capture-based design to develop the required expertise to effectively use the Synopsys Design Compiler. Over 100 `Classic Scenarios' faced by designers when using the Design Compiler have been captured, discussed and solutions provided. These scenarios are based on both personal experiences and actual user queries. A general understanding of the problem-solving techniques provided should help the reader debug similar and more complicated problems. In addition, several examples and dc_shell scripts (Design Compiler scripts) have also been provided. Logic Synthesis Using Synopsys®, Second Edition is an updated and revised version of the very successful first edition. The second edition covers several new and emerging areas, in addition to improvements in the presentation and contents in all chapters from the first edition. With the rapid shrinking of process geometries it is becoming increasingly important that `physical' phenomenon like clusters and wire loads be considered during the synthesis phase. The increasing demand for FPGAs has warranted a greater focus on FPGA synthesis tools and methodology. Finally, behavioral synthesis, the move to designing at a higher level of abstraction than RTL, is fast becoming a reality. These factors have resulted in the inclusion of separate chapters in the second edition to cover Links to Layout, FPGA Synthesis and Behavioral Synthesis, respectively. Logic Synthesis Using Synopsys®, Second Edition has been written with the CAD engineer in mind. A clear understanding of the synthesis tool concepts, its capabilities and the related CAD issues will help the CAD engineer formulate an effective synthesis-based ASIC design methodology. The intent is also to assist design teams to better incorporate and effectively integrate synthesis with their existing in-house design methodology and CAD tools.
Until now, there was no single resource for actual digital system design. Using both basic and advanced concepts, Sequential Logic: Analysis and Synthesis offers a thorough exposition of the analysis and synthesis of both synchronous and asynchronous sequential machines. With 25 years of experience in designing computing equipment, the author stresses the practical design of state machines. He clearly delineates each step of the structured and rigorous design principles that can be applied to practical applications. The book begins by reviewing the analysis of combinatorial logic and Boolean algebra, and goes on to define sequential machines and discuss traditional and alternative methods for synthesizing synchronous sequential machines. The final chapters deal with asynchronous sequential machines and pulse-mode asynchronous sequential machines. Because this volume is technology-independent, these techniques can be used in a variety of fields, such as electrical and computer engineering as well as nanotechnology. By presenting each method in detail, expounding on several corresponding examples, and providing over 500 useful figures, Sequential Logic is an excellent tutorial on analysis and synthesis procedures.
Logic Synthesis and Optimization presents up-to-date research information in a pedagogical form. The authors are recognized as the leading experts on the subject. The focus of the book is on logic minimization and includes such topics as two-level minimization, multi-level minimization, application of binary decision diagrams, delay optimization, asynchronous circuits, spectral method for logic design, field programmable gate array (FPGA) design, EXOR logic synthesis and technology mapping. Examples and illustrations are included so that each contribution can be read independently. Logic Synthesis and Optimization is an indispensable reference for academic researchers as well as professional CAD engineers.
Starting with simple examples showing the relevance of cutting and pasting logics, the monograph develops a mathematical theory of combining and decomposing logics, ranging from propositional and first-order based logics to higher-order based logics as well as to non-truth functional logics. The theory covers mechanisms for combining semantic structures and deductive systems either of the same or different nature. The issue of preservation of properties is addressed.