Download Free Advanced Dynamic System Simulation Book in PDF and EPUB Free Download. You can read online Advanced Dynamic System Simulation and write the review.

Learn the latest techniques in programming sophisticated simulation systems This cutting-edge text presents the latest techniques in advanced simulation programming for interactive modeling and simulation of dynamic systems, such as aerospace vehicles, control systems, and biological systems. The author, a leading authority in the field, demonstrates computer software that can handle large simulation studies on standard personal computers. Readers can run, edit, and modify the sample simulations from the text with the accompanying CD-ROM, featuring the OPEN DESIRE program for Linux and Windows. The program included on CD solves up to 40,000 ordinary differential equations and implements exceptionally fast and convenient vector operations. The text begins with an introduction to dynamic-system simulation, including a demonstration of a simple guided-missile simulation. Among the other highlights of coverage are: Models that involve sampled-data operations and sampled-data difference equations, including improved techniques for proper numerical integration of switched variables Novel vector compiler that produces exceptionally fast programs for vector and matrix assignments, differential equations, and difference equations Application of vector compiler to parameter-influence studies and Monte Carlo simulation of dynamic systems Vectorized Monte Carlo simulations involving time-varying noise, derived from periodic pseudorandom-noise samples Vector models of neural networks, including a new pulsed-neuron model Vectorized programs for fuzzy-set controller, partial differential equations, and agro-ecological models replicated at many points of a landscape map This text is intended for graduate-level students, engineers, and computer scientists, particularly those involved in aerospace, control system design, chemical process control, and biological systems. All readers will gain the practical skills they need to design sophisticated simulations of dynamic systems. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
Learn the latest techniques in programming sophisticated simulation systems This cutting-edge text presents the latest techniques in advanced simulation programming for interactive modeling and simulation of dynamic systems, such as aerospace vehicles, control systems, and biological systems. The author, a leading authority in the field, demonstrates computer software that can handle large simulation studies on standard personal computers. Readers can run, edit, and modify the sample simulations from the text with the accompanying CD-ROM, featuring the OPEN DESIRE program for Linux and Windows. The program included on CD solves up to 40,000 ordinary differential equations and implements exceptionally fast and convenient vector operations. The text begins with an introduction to dynamic-system simulation, including a demonstration of a simple guided-missile simulation. Among the other highlights of coverage are: Models that involve sampled-data operations and sampled-data difference equations, including improved techniques for proper numerical integration of switched variables Novel vector compiler that produces exceptionally fast programs for vector and matrix assignments, differential equations, and difference equations Application of vector compiler to parameter-influence studies and Monte Carlo simulation of dynamic systems Vectorized Monte Carlo simulations involving time-varying noise, derived from periodic pseudorandom-noise samples Vector models of neural networks, including a new pulsed-neuron model Vectorized programs for fuzzy-set controller, partial differential equations, and agro-ecological models replicated at many points of a landscape map This text is intended for graduate-level students, engineers, and computer scientists, particularly those involved in aerospace, control system design, chemical process control, and biological systems. All readers will gain the practical skills they need to design sophisticated simulations of dynamic systems. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
"Analytical System Dynamics: Modeling and Simulation" combines results from analytical mechanics and system dynamics to develop an approach to modeling constrained multidiscipline dynamic systems. This combination yields a modeling technique based on the energy method of Lagrange, which in turn, results in a set of differential-algebraic equations that are suitable for numerical integration. Using the modeling approach presented in this book enables one to model and simulate systems as diverse as a six-link, closed-loop mechanism or a transistor power amplifier.
The German Research Council (DFG) decided 1987 to establish a nationwide five year research project devoted to dynamics of multibody systems. In this project universities and research centers cooperated with the goal to develop a general pur pose multibody system software package. This concept provides the opportunity to use a modular structure of the software, i.e. different multibody formalisms may be combined with different simulation programmes via standardized interfaces. For the DFG project the database RSYST was chosen using standard FORTRAN 77 and an object oriented multibody system datamodel was defined. The project included • research on the fundamentals of the method of multibody systems, • concepts for new formalisms of dynamical analysis, • development of efficient numerical algorithms and • realization of a powerful software package of multibody systems. These goals required an interdisciplinary cooperation between mathematics, compu ter science, mechanics, and control theory. ix X After a rigorous reviewing process the following research institutions participated in the project (under the responsibility of leading scientists): Technical University of Aachen (Prof. G. Sedlacek) Technical University of Darmstadt (Prof. P. Hagedorn) University of Duisburg M. Hiller) (Prof.
Showing you how to use personal computers for modeling and simulation, Interactive Dynamic-System Simulation, Second Edition provides a practical tutorial on interactive dynamic-system modeling and simulation. It discusses how to effectively simulate dynamical systems, such as aerospace vehicles, power plants, chemical processes, control systems, a
Advanced System Modelling and Simulation with Block Diagram Languages explores and describes the use of block languages in dynamic modelling and simulation. The application of block diagrams to dynamic modelling is reviewed, not only in terms of known components and systems, but also in terms of the development of new systems. Methods by which block diagrams clarify the dynamic essence of systems and their components are emphasized throughout the book, and sufficient introductory material is included to elucidate the book's advanced material. Widely used continuous dynamic system simulation (CDSS) languages are analyzed, and their technical features are discussed. This self-contained resource includes a review section on block diagram algebra and applied transfer functions, both of which are important mathematical subjects, relevant to the understanding of continuous dynamic system simulation.
In this volume recent advances in the use of modern quantitative models for the analysis of various problems related to the dynamics of social and economic systems are presented. The majority chapters describe tools and techniques of broadly perceived computational intelligence, notably fuzzy logic, evolutionary computation, neural networks and some non-standard probabilistic and statistical analyses. Due to the high complexity of the systems and problems considered, in many situations it is necessary to consider at the same time analytic, topological and statistical aspects and apply appropriate procedures and algorithms. This volume is a direct result of vivid discussions held during the Fifth International Workshop on Dynamics of Social and Economical Systems (DYSES) which was held at Benevento, Italy September 20-25, 2010, as well as a couple of post-workshop meetings and consultations.
The increased efficiency and quality constraints imposed on electrical energy systems have inspired a renewed research interest in the study of formal approaches to the analysis and control of power electronics converters. Switched systems represent a useful framework for modeling these converters and the peculiarities of their operating conditions and control goals justify the specific classification of “switched electronic systems”. Indeed, idealized switched models of power converters introduce problems not commonly encountered when analyzing generic switched models or non-switched electrical networks. In that sense the analysis of switched electronic systems represents a source for new ideas and benchmarks for switched and hybrid systems generally. Dynamics and Control of Switched Electronic Systems draws on the expertise of an international group of expert contributors to give an overview of recent advances in the modeling, simulation and control of switched electronic systems. The reader is provided with a well-organized source of references and a mathematically-based report of the state of the art in analysis and design techniques for switched power converters. Intuitive language, realistic illustrative examples and numerical simulations help the reader to come to grips with the rigorous presentation of many promising directions of research such as: converter topologies and modulation techniques; continuous-time, discrete-time and hybrid models; modern control strategies for power converters; and challenges in numerical simulation. The guidance and information imparted in this text will be appreciated by engineers, and applied mathematicians working on system and circuit theory, control systems development, and electronic and energy conversion systems design.
Collecting the work of the foremost scientists in the field, Discrete-Event Modeling and Simulation: Theory and Applications presents the state of the art in modeling discrete-event systems using the discrete-event system specification (DEVS) approach. It introduces the latest advances, recent extensions of formal techniques, and real-world examples of various applications. The book covers many topics that pertain to several layers of the modeling and simulation architecture. It discusses DEVS model development support and the interaction of DEVS with other methodologies. It describes different forms of simulation supported by DEVS, the use of real-time DEVS simulation, the relationship between DEVS and graph transformation, the influence of DEVS variants on simulation performance, and interoperability and composability with emphasis on DEVS standardization. The text also examines extensions to DEVS, new formalisms, and abstractions of DEVS models as well as the theory and analysis behind real-world system identification and control. To support the generation and search of optimal models of a system, a framework is developed based on the system entity structure and its transformation to DEVS simulation models. In addition, the book explores numerous interesting examples that illustrate the use of DEVS to build successful applications, including optical network-on-chip, construction/building design, process control, workflow systems, and environmental models. A one-stop resource on advances in DEVS theory, applications, and methodology, this volume offers a sampling of the best research in the area, a broad picture of the DEVS landscape, and trend-setting applications enabled by the DEVS approach. It provides the basis for future research discoveries and encourages the development of new applications.
Discrete-event dynamic systems (DEDs) permeate our world. They are of great importance in modern manufacturing processes, transportation and various forms of computer and communications networking. This book begins with the mathematical basics required for the study of DEDs and moves on to present various tools used in their modeling and control. Industrial examples illustrate the concepts and methods discussed, making this book an invaluable aid for students embarking on further courses in control, manufacturing engineering or computer studies.