Download Free Advanced Control Of Grid Integrated Renewable Energy Power Plants Book in PDF and EPUB Free Download. You can read online Advanced Control Of Grid Integrated Renewable Energy Power Plants and write the review.

Presents the principles, derivations, and equations of renewable energy power plants, including MATLAB code Advanced Control of Grid-Integrated Renewable Energy Power Plants presents a comprehensive introduction to the power system dynamics and stability of renewable energy power plants (RPPs), such as wind turbines, wind power plants, and photovoltaic systems. The author—a noted expert on the topic—takes a rigorous approach to the analysis and modelling of RPPs, such as turbine rotors, PV cells, electronic converters, transformers, and aggregated grid models. This approach allows for the validation of requirements for sustainable power systems based on formal methods. The text deals with nonlinear model-based observer and control design techniques in the Takagi-Sugeno (TS) framework. It explores the Takagi-Sugeno fuzzy (TSF) models which are nonlinear systems, in which the consequent part of a fuzzy rule is a mathematical formula, representing local dynamics or limited nonlinearities by sector functions. The strong property of the TSF finds several applications modelling dynamical systems that can be described by differential equations. The book’s practical exercises use MATLAB code to help model simulation models of single large-scale wind turbines, wind farms, and photovoltaic plants. This important book: Provides a complete introduction to the power system dynamics and stability of renewable energy power plants Includes a detailed discussion of how to design model model-based controllers for RPPs Takes a rigorous approach to the analysis and modelling of RPPs, including turbine rotors, PV cells, electronic converters, transformers, aggregated grid models, and more Includes MATLAB code to model simulation models of single large-scale wind turbines, wind farms, and photovoltaic plants Written for students and researchers of renewable energy, Advanced Control of Grid-Integrated Renewable Energy Power Plants offers an authoritative text to the topic.
This book makes the area of integration of renewable energy into the existing electricity grid accessible to engineers and researchers. This is a self-contained text which has models of power system devices and control theory necessary to understand and tune controllers in use currently. The new research in renewable energy integration is put into perspective by comparing the change in the system dynamics as compared to the traditional electricity grid. The emergence of the voltage stability problem is motivated by extensive examples. Various methods to mitigate this problem are discussed bringing out their merits clearly. As a solution to the voltage stability problem, the book covers the use of FACTS devices and basic control methods. An important contribution of this book is to introduce advanced control methods for voltage stability. It covers the application of output feedback methods with a special emphasis on how to bound modelling uncertainties and the use of robust control theory to design controllers for practical power systems. Special emphasis is given to designing controllers for FACTS devices to improve low-voltage ride-through capability of induction generators. As generally PV is connected in low voltage distribution area, this book also provides a systematic control design for the PV unit in distribution systems. The theory is amply illustrated with large IEEE Test systems with multiple generators and dynamic load. Controllers are designed using Matlab and tested using full system models in PSSE.
This book presents comprehensive coverage of the means to integrate renewable power, namely wind and solar power. It looks at new approaches to meet the challenges, such as increasing interconnection capacity among geographical areas, hybridisation of different distributed energy resources and building up demand response capabilities.
A comprehensive reference to renewable energy technologies with a focus on power generation and integration into power systems This book addresses the generation of energy (primarily electrical) through various renewable sources. It discusses solar and wind power—two major resources that are now in use in small as well as large-scale power production—and their requirements for effectively using advanced control techniques.In addition, the book looks at theintegration of renewable energy in the power grid and its ability to work in a micro grid. Operation and Control of Renewable Energy Systems describes the numerous types of renewable energy sources available and the basic principles involving energy conversion, including the theory of fluid mechanics and the laws of thermodynamics. Chapter coverage includes the theory of power electronics and various electric power generators, grid scale energy storage systems, photovoltaic power generation, solar thermal energy conversion technology, horizontal and vertical wind turbines for power generation, and more. Covers integration into power systems with an emphasis on microgrids Introduces a wide range of subjects related to renewable energy systems, including energy storage, microgrids, and battery technologies Includes tutorial materials such as up-to-date references for wind energy, grid connection, and power electronics—plus worked examples and solutions Operation and Control of Renewable Energy Systems is the perfect introduction to renewable energy technologies for undergraduate and graduate students and can also be very useful to practicing engineers.
Compiles current research into the analysis and design of power electronic converters for industrial applications and renewable energy systems, presenting modern and future applications of power electronics systems in the field of electrical vehicles With emphasis on the importance and long-term viability of Power Electronics for Renewable Energy this book brings together the state of the art knowledge and cutting-edge techniques in various stages of research. The topics included are not currently available for practicing professionals and aim to enable the reader to directly apply the knowledge gained to their designs. The book addresses the practical issues of current and future electric and plug-in hybrid electric vehicles (PHEVs), and focuses primarily on power electronics and motor drives based solutions for electric vehicle (EV) technologies. Propulsion system requirements and motor sizing for EVs is discussed, along with practical system sizing examples. Key EV battery technologies are explained as well as corresponding battery management issues. PHEV power system architectures and advanced power electronics intensive charging infrastructures for EVs and PHEVs are detailed. EV/PHEV interface with renewable energy is described, with practical examples. This book explores new topics for further research needed world-wide, and defines existing challenges, concerns, and selected problems that comply with international trends, standards, and programs for electric power conversion, distribution, and sustainable energy development. It will lead to the advancement of the current state-of-the art applications of power electronics for renewable energy, transportation, and industrial applications and will help add experience in the various industries and academia about the energy conversion technology and distributed energy sources. Combines state of the art global expertise to present the latest research on power electronics and its application in transportation, renewable energy and different industrial applications Offers an overview of existing technology and future trends, with discussion and analysis of different types of converters and control techniques (power converters, high performance power devices, power system, high performance control system and novel applications) Systematic explanation to provide researchers with enough background and understanding to go deeper in the topics covered in the book
Generation of electricity from renewable sources has become a necessity, particularly due to environmental concerns. In order for renewable sources to provide reliable power, their sporadic availability under certain conditions and the lack of control over the resource must be addressed. Different renewable energy sources and storage technologies bring various properties to the table, and power systems must be adapted and constructed to accommodate these. Power electronics and micro-grids play key roles in enabling the use of renewable energy in the evolving smarter grids.
Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in increasing their efficiency. Thermal energy systems are explored in depth, as are photovoltaic generation and other solar energy applications such as solar furnaces and solar refrigeration systems. This second and updated edition of Advanced Control of Solar Plants includes new material on: solar towers and solar tracking; heliostat calibration, characterization and offset correction; solar radiation, estimation, prediction, and computation; and integrated control of solar plants. This new edition contains worked examples in the text as well as proposed exercises and simulation models and so will be of great use to the student and academic, as well as the industrial practitioner.
Integrating renewable energy and other distributed energy sources into smart grids, often via power inverters, is arguably the largest “new frontier” for smart grid advancements. Inverters should be controlled properly so that their integration does not jeopardize the stability and performance of power systems and a solid technical backbone is formed to facilitate other functions and services of smart grids. This unique reference offers systematic treatment of important control problems in power inverters, and different general converter theories. Starting at a basic level, it presents conventional power conversion methodologies and then ‘non-conventional’ methods, with a highly accessible summary of the latest developments in power inverters as well as insight into the grid connection of renewable power. Consisting of four parts – Power Quality Control, Neutral Line Provision, Power Flow Control, and Synchronisation – this book fully demonstrates the integration of control and power electronics. Key features include: the fundamentals of power processing and hardware design innovative control strategies to systematically treat the control of power inverters extensive experimental results for most of the control strategies presented the pioneering work on “synchronverters” which has gained IET Highly Commended Innovation Award Engineers working on inverter design and those at power system utilities can learn how advanced control strategies could improve system performance and work in practice. The book is a useful reference for researchers who are interested in the area of control engineering, power electronics, renewable energy and distributed generation, smart grids, flexible AC transmission systems, and power systems for more-electric aircraft and all-electric ships. This is also a handy text for graduate students and university professors in the areas of electrical power engineering, advanced control engineering, power electronics, renewable energy and smart grid integration.
This book consists of two parts. The first part studies selected recent developed strategies of control and management for renewable energy resources. The strategies of control are tested in the presence of unbalance power, voltage faults, frequency deviation, wind speed variation and parametric uncertainties. The second part is especially focused on study of hybrid photovoltaic (PV)-Concentrated solar power (CSP) coupled to a thermal storage system. It gathers a set of chapters covering recent survey literature, modelling and optimization of hybrid PV-CSP power plants. In this part, a detailed model of hybrid PV-CSP with thermal storage system is presented and smart optimization techniques like particle swarm optimization (PSO) and genetic algorithm (GA) are also described and used to optimally design the hybrid PV-CSP renewable energy system. The book would be interesting to most academic undergraduate, postgraduates, researchers on renewable energy systems in terms of modeling, optimization and control, as well as the satisfaction of grid code requirements. Also, it provides an excellent background to renewable energy sources, it is an excellent choice for energy engineers, researchers, system operators, and graduate students. This book can used as a good reference for the academic research on the smart grid, power control, integration of renewable energy sources, and related to this or used in Ph.D study of control, optimisation, management problems and their application in field engineering.
The book covers energy storage systems, bioenergy and hydrogen economy, grid integration of renewable energy systems, distributed generation, economic analysis, and environmental impacts of renewable energy systems. The overall approaches are interdisciplinary and comprehensive, covering economic, environmental, and grid integration issues as well as the physical and engineering aspects. Core issues discussed include mechanical, electrical, and thermal energy storage systems, batteries, fuel cells, biomass and biofuels, hydrogen economy, distributed generation, a brief presentation of microgrids, and in-depth discussions of economic analysis and methods of renewable energy systems, environmental impacts, life-cycle analysis, and energy conservation issues. With several solved examples, holistic material presentation, in-depth subject matter discussions and self-content material presentation, this textbook will appeal strongly to students and professional and nonprofessional readers who wish to understand this fascinating subject. Readers are encouraged to solve the problems and questions, which are useful ways to understand and apply the concepts and the topics included.