Download Free Advanced Concrete Technology Book in PDF and EPUB Free Download. You can read online Advanced Concrete Technology and write the review.

Over the past two decades concrete has enjoyed a renewed level of research and testing, resulting in the development of many new types of concrete. Through the use of various additives, production techniques and chemical processes, there is now a great degree of control over the properties of specific concretes for a wide range of applications. New theories, models and testing techniques have also been developed to push the envelope of concrete as a building material. There is no current textbook which brings all of these advancements together in a single volume. This book aims to bridge the gap between the traditional concrete technologies and the emerging state-of-the-art technologies which are gaining wider use.
Based on the Institute of Concrete Technology's Advanced Concrete Technology Course, these four volumes are a comprehensive educational and reference resource for the concrete materials technologist. An expert international team of authors from research, academia and industry has been brought together to produce this unique series. Each volume deals with a different aspect of the subject: constituent materials, properties, processes and testing and quality. With worked examples, case studies and illustrations throughout, the books will be a key reference for the concrete specialist for years to come. - Expert international authorship ensures the series is authoritative - Case studies and worked examples help the reader apply their knowledge to practice - Comprehensive coverage of the subject gives the reader all the necessary reference material
This textbook provides updated information on materials and other aspects of concrete. It covers all types of concretes: normal, high strength, self compacting concrete, light weight. It provides guidelines on production, placement, compaction, curing and testing. This Handbook consolidates in a single volume various types of concrete, experience and insights of experts of concrete technology and will help in production of durable, economical and sustainable concrete.
Durability failures in reinforced concrete structures are wasteful of resources and energy. The introduction to practice of European Standard EN 206-1 represents a significant shift in emphasis on the need to explicitly consider each potential durability threat when specifying and producing concrete. Fundamentals of Durable Reinforced Concrete presents the fundamental aspects of concrete durability including reinforcement corrosion, carbonation, chloride ingress, alkali-aggregate reaction, freeze/thaw damage, sulphate attack, chemical attack, cracking, abrasion and weathering. The background to the durability exposure classes in EN 206-1 is also explained. Future directions in performance-based specifications and mathematical modelling of degradation are presented. This book will be of particular interest to specifiers applying the principles of the new European Standard EN 206-1 for the first time, to postgraduate researchers in mathematical modelling of degradation mechanisms, to undergraduates of engineering, architecture and building technology, and students of advanced concrete technology who require a concise source of reference on concrete durability.
The success of any concrete structure depends on the designer's sound knowledge of concrete and its behaviour under load, under temperature and humidity changes, and under exposure to the relevant environment and industrial conditions. This book gives students a thorough understanding of all aspects of concrete technology from first principles. It covers concrete ingredients, properties and behaviour in the finished structure with reference to national standards and recognised testing methods used in Britain, the European Union and the United States. Examples and problems are given throughout to emphasise the important aspects of each chapter. An excellent coursebook for all students of Civil Engineering, Structural Engineering and Building at degree or diploma level, Concrete Technology will also be a valuable reference book for practising engineers in the field.
From China to Kuala Lumpur to Dubai to downtown New York, amazing buildings and unusual structures create attention with the uniqueness of their design. While attractive to developers and investors, the safe and economic design and construction of reinforced concrete buildings can sometimes be problematic. Advanced Materials and Techniques for Rein
Based on the Institute of Concrete Technology's Advanced Concrete Technology Course, these four volumes are a comprehensive educational and reference resource for the concrete materials technologist. An expert international team of authors from research, academia and industry has been brought together to produce this unique series. Each volume deals with a different aspect of the subject: constituent materials, properties, processes and testing and quality. With worked examples, case studies and illustrations throughout, the books will be a key reference for the concrete specialist for years to come. - Expert international authorship ensures the series is authoritative - Case studies and worked examples help the reader apply their knowledge to practice - Comprehensive coverage of the subject gives the reader all the necessary reference material
Durability and service life design of concrete constructions have considerable socio-economic and environmental consequences, in which the permeability of concrete to aggressive intruders plays a vital role. Concrete Permeability and Durability Performance provides deep insight into the permeability of concrete, moving from theory to practice, and presents over 20 real cases, such as Tokyo’s Museum of Western Art, Port of Miami Tunnel and Hong Kong-Zhuhai-Macao sea-link, including field tests in the Antarctic and Atacama Desert. It stresses the importance of site testing for a realistic durability assessment and details the "Torrent Method" for non-destructive measurement of air-permeability. It also delivers answers for some vexing questions: Should the coefficient of permeability be expressed in m2 or m/s? How to get a "mean" pore radius of concrete from gas-permeability tests? Why should permeability preferably be measured on site? How can service life of reinforced concrete structures be predicted by site testing of gas-permeability and cover thickness? Practitioners will find stimulating examples on how to predict the coming service life of new structures and the remaining life of existing structures, based on site testing of air-permeability and cover thickness. Researchers will value theoretical principles, testing methods, as well as how test results reflect the influence of concrete mix composition and processing.
The two themes of integration of structural and durability design, and integration of concrete technologies in relation to global environmental issues are drawn together in this book. It presents the views of distinguished international researchers and engineers on these key topics as the 21st century approaches. Derived from a workshop on rational design of concrete structures held in Hakodate, Japan, in August 1995, the book provides a focus for debate about the ways in which concrete technologies around the world must respond to the necessity of ensuring that concrete construction achieves higher levels of durability, and about the growing imperative to meet higher environmental standards in concrete production and use.