Download Free Advanced 3d Structured Electrode For Potassium Metal Anodes Book in PDF and EPUB Free Download. You can read online Advanced 3d Structured Electrode For Potassium Metal Anodes and write the review.

The potassium (K) metal anode, following the "Holy Grail" Li metal anode, is one of the most promising anode materials for next-generation batteries. In comparison with Li, K exhibits even more pronounced energy storage properties. However, it suffers from similar challenges as most alkali metal anodes, such as safety and cyclability issues. Borrowing strategies from Li/Na metal anodes, the three-dimensional (3D)-structured current collector has proven to be a universal and effective strategy. This study examines the recent research progress of 3D-structured electrodes for K metal anodes, focusing on the most commonly used host materials, including carbon-, metal-, and MXene-related electrode materials. Finally, existing challenges, various perspectives on the rational design of K metal anodes, and the future development of K batteries are presented.
This book focusses on the current research on materials for advanced battery technologies and proposes future directions for different types of batteries to meet the current challenges associated with the fuel cell. Furthermore, it provides insights into scientific and practical issues in the development of various batteries like sodium, potassium, zinc, magnesium, aluminum, calcium, and dual metal ion, to bring a new perspective to storage technologies beyond lithium-ion batteries. It introduces different themes of batteries to evaluate the opportunities and challenges of these battery systems from a commercial aspect. Key features: Deals with different potential rechargeable battery systems as suitable substitutes for LIBs Discusses different investigated materials as anode, cathode, and electrolytes for different energy storage systems Provides a complete and comprehensive review of all the existing metal-ion batteries Includes practical challenges and future opportunities of each battery category Reviews commercial aspects of different battery systems This book is aimed at researchers, graduate students, and professionals in industrial and applied chemistry, renewable energy, clean and sustainable processes, chemical engineering, materials science, nanotechnology, and battery chemistry.
Battery technology is constantly changing, and the concepts and applications of these changes are rapidly becoming increasingly more important as more and more industries and individuals continue to make “greener” choices in their energy sources. As global dependence on fossil fuels slowly wanes, there is a heavier and heavier importance placed on cleaner power sources and methods for storing and transporting that power. Battery technology is a huge part of this global energy revolution. Potassium-ion batteries were first introduced to the world for energy storage in 2004, over two decades after the invention of lithium-ion batteries. Potassium-ion (or “K-ion”) batteries have many advantages, including low cost, long cycle life, high energy density, safety, and reliability. Potassium-ion batteries are the potential alternative to lithium-ion batteries, fueling a new direction of energy storage research in many applications and across industries. Potassium-ion Batteries: Materials and Applications explores the concepts, mechanisms, and applications of the next-generation energy technology of potassium-ion batteries. Also included is an in-depth overview of energy storage materials and electrolytes. This is the first book on this technology and serves as a reference guide for electrochemists, chemical engineers, students, research scholars, faculty, and R&D professionals who are working in electrochemistry, solid-state science, material science, ionics, power sources, and renewable energy storage fields.
This invaluable book focuses on the mechanisms of formation of a solid-electrolyte interphase (SEI) on the electrode surfaces of lithium-ion batteries. The SEI film is due to electromechanical reduction of species present in the electrolyte. It is widely recognized that the presence of the film plays an essential role in the battery performance, and its very nature can determine an extended (or shorter) life for the battery. In spite of the numerous related research efforts, details on the stability of the SEI composition and its influence on the battery capacity are still controversial. This book carefully analyzes and discusses the most recent findings and advances on this topic.
Offers the first comprehensive account of this interesting and growing research field Printed Batteries: Materials, Technologies and Applications reviews the current state of the art for printed batteries, discussing the different types and materials, and describing the printing techniques. It addresses the main applications that are being developed for printed batteries as well as the major advantages and remaining challenges that exist in this rapidly evolving area of research. It is the first book on printed batteries that seeks to promote a deeper understanding of this increasingly relevant research and application area. It is written in a way so as to interest and motivate readers to tackle the many challenges that lie ahead so that the entire research community can provide the world with a bright, innovative future in the area of printed batteries. Topics covered in Printed Batteries include, Printed Batteries: Definition, Types and Advantages; Printing Techniques for Batteries, Including 3D Printing; Inks Formulation and Properties for Printing Techniques; Rheological Properties for Electrode Slurry; Solid Polymer Electrolytes for Printed Batteries; Printed Battery Design; and Printed Battery Applications. Covers everything readers need to know about the materials and techniques required for printed batteries Informs on the applications for printed batteries and what the benefits are Discusses the challenges that lie ahead as innovators continue with their research Printed Batteries: Materials, Technologies and Applications is a unique and informative book that will appeal to academic researchers, industrial scientists, and engineers working in the areas of sensors, actuators, energy storage, and printed electronics.
The rise of renewable energy responds to global warming, necessitating reliable storage like batteries. Though frequent use can affect their lifespan, these have become smaller, simpler, and more adaptable. Recent technological progress has improved batteries' longevity and efficiency, with costs dropping due to mass production. This book examines different battery types, their evolution, and the cutting-edge materials enhancing their performance, particularly focusing on metal oxides in various battery technologies. Exploring advanced materials for batteries is not just a theoretical exercise but a practical journey into the future of energy. This book is an essential guide, tracing the evolution from early battery technology to the latest innovations and equipping researchers, engineers, and students with the practical knowledge to drive the next wave of sustainable energy solutions. Key Features: · Provides a comprehensive resource for academics, researchers, and engineers in energy storage, with detailed insights into various battery types. · Discusses advanced materials for smart and small batteries. · Delves into cutting-edge materials designed for compact and efficient batteries. · Offers a visionary outlook on the evolution of battery technology and traces historical advances alongside the latest breakthroughs in battery science and future perspectives. This book serves as a beacon, bridging historical milestones with future goals. It thoroughly explores materials, including lithium-ion and sodium-ion, in a manner accessible to everyone. It lays a robust groundwork for innovators in energy storage, steering us towards a more sustainable tomorrow. This work informs and connects readers to the evolving narrative of battery technology.
Sustainable Energy Storage in the Scope of Circular Economy Comprehensive resource reviewing recent developments in the design and application of energy storage devices Sustainable Energy Storage in the Scope of Circular Economy reviews the recent developments in energy storage devices based on sustainable materials within the framework of the circular economy, addressing the sustainable design and application of energy storage devices with consideration of the key advantages and remaining challenges in this rapidly evolving research field. Topics covered include: Sustainable materials for batteries and fuel cell devices Multifunctional sustainable materials for energy storage Energy storage devices in the scope of the Internet of Things Sustainable energy storage devices and device design for sensors and actuators Waste prevention for energy storage devices based on second life and recycling procedures With detailed information on today’s most effective energy storage devices, Sustainable Energy Storage in the Scope of Circular Economy is a key resource for academic researchers, industrial scientists and engineers, and students in related programs of study who wish to understand the state of the art in this field.
This volume covers recent advanced battery systems such as metal-ion, hybrid, and metal-air batteries. It includes an introduction to fluoride, potassium, zinc, chloride, aluminium, and iron-ion batteries; special or hybrid batteries are included, with calcium, nuclear, thermal, and lithium-magnesium hybrid batteries also explained. It summarizes the recent progress and chemistry behind the popular metal-air batteries, including a systematic overview of the components, design, and integration of these new battery technologies. Features: Covers recent battery technologies in detail, from the chemistry to advances in post-lithium-ion batteries. Various post-lithium-ion batteries are discussed in detail. Includes a section on ion batteries, exploring new types of metal-ion batteries. Focuses in each chapter on a particular battery type, including different metal-ion batteries such as zinc, potassium, aluminium, and their air version batteries. Provides authoritative coverage of scientific content via global contributing experts. This book is aimed at graduate students, researchers, and professionals in materials science, chemical and electrical engineering, and electrochemistry.
This book covers both the fundamental and applied aspects of advanced Na-ion batteries (NIB) which have proven to be a potential challenger to Li-ion batteries. Both the chemistry and design of positive and negative electrode materials are examined. In NIB, the electrolyte is also a crucial part of the batteries and the recent research, showing a possible alternative to classical electrolytes – with the development of ionic liquid-based electrolytes – is also explored. Cycling performance in NIB is also strongly associated with the quality of the electrode-electrolyte interface, where electrolyte degradation takes place; thus, Na-ion Batteries details the recent achievements in furthering knowledge of this interface. Finally, as the ultimate goal is commercialization of this new electrical storage technology, the last chapters are dedicated to the industrial point of view, given by two startup companies, who developed two different NIB chemistries for complementary applications and markets.
This book provides a comprehensive overview of the latest developments and materials used in electrochemical energy storage and conversion devices, including lithium-ion batteries, sodium-ion batteries, zinc-ion batteries, supercapacitors and conversion materials for solar and fuel cells. Chapters introduce the technologies behind each material, in addition to the fundamental principles of the devices, and their wider impact and contribution to the field. This book will be an ideal reference for researchers and individuals working in industries based on energy storage and conversion technologies across physics, chemistry and engineering. FEATURES Edited by established authorities, with chapter contributions from subject-area specialists Provides a comprehensive review of the field Up to date with the latest developments and research Editors Dr. Mesfin A. Kebede obtained his PhD in Metallurgical Engineering from Inha University, South Korea. He is now a principal research scientist at Energy Centre of Council for Scientific and Industrial Research (CSIR), South Africa. He was previously an assistant professor in the Department of Applied Physics and Materials Science at Hawassa University, Ethiopia. His extensive research experience covers the use of electrode materials for energy storage and energy conversion. Prof. Fabian I. Ezema is a professor at the University of Nigeria, Nsukka. He obtained his PhD in Physics and Astronomy from University of Nigeria, Nsukka. His research focuses on several areas of materials science with an emphasis on energy applications, specifically electrode materials for energy conversion and storage.