Download Free Adhesion Molecules And The Lung Book in PDF and EPUB Free Download. You can read online Adhesion Molecules And The Lung and write the review.

This state-of-the-art reference outlines current knowledge of the structure, transcriptional regulation, and binding characteristics of vascular and leukocyte adhesion molecules and their ligands delineating the nature of adhesion molecule interactions in lung morphogenesis and repair, tumor metastasis, and experimental models of inflammatory lung injury.
The microcirculation is highly responsive to, and a vital participant in, the inflammatory response. All segments of the microvasculature (arterioles, capillaries, and venules) exhibit characteristic phenotypic changes during inflammation that appear to be directed toward enhancing the delivery of inflammatory cells to the injured/infected tissue, isolating the region from healthy tissue and the systemic circulation, and setting the stage for tissue repair and regeneration. The best characterized responses of the microcirculation to inflammation include impaired vasomotor function, reduced capillary perfusion, adhesion of leukocytes and platelets, activation of the coagulation cascade, and enhanced thrombosis, increased vascular permeability, and an increase in the rate of proliferation of blood and lymphatic vessels. A variety of cells that normally circulate in blood (leukocytes, platelets) or reside within the vessel wall (endothelial cells, pericytes) or in the perivascular space (mast cells, macrophages) are activated in response to inflammation. The activation products and chemical mediators released from these cells act through different well-characterized signaling pathways to induce the phenotypic changes in microvessel function that accompany inflammation. Drugs that target a specific microvascular response to inflammation, such as leukocyte-endothelial cell adhesion or angiogenesis, have shown promise in both the preclinical and clinical studies of inflammatory disease. Future research efforts in this area will likely identify new avenues for therapeutic intervention in inflammation. Table of Contents: Introduction / Historical Perspectives / Anatomical Considerations / Impaired Vasomotor Responses / Capillary Perfusion / Angiogenesis / Leukocyte-Endothelial Cell Adhesion / Platelet-Vessel Wall Interactions / Coagulation and Thrombosis / Endothelial Barrier Dysfunction / Epilogue / References
This updated and expanded Second Edition of The Adhesion Molecule FactsBook has nearly double the number of entries of the First Edition, and provides a compendium of the major cell surface adhesion molecules. The introductory chapters detail the organization of the data in the entries section, provide a background to the main adhesion molecule families, and inform the reader how to access information on adhesion molecules on the Internet. The entries have been designed to allow the reader to quickly establish the main structure and functional features of each molecule and where to find information. - Alternative nomenclature - Tissue distribution and regulation of expression - Ligands - Gene organization and chromosomal location - Protein structure and molecular weights - Amino acid sequence of the most commonly studied organisms - PIR, SWISSPROT, and EMBL/GenBank accession numbers - Biological function - Key references
This report considers the biological and behavioral mechanisms that may underlie the pathogenicity of tobacco smoke. Many Surgeon General's reports have considered research findings on mechanisms in assessing the biological plausibility of associations observed in epidemiologic studies. Mechanisms of disease are important because they may provide plausibility, which is one of the guideline criteria for assessing evidence on causation. This report specifically reviews the evidence on the potential mechanisms by which smoking causes diseases and considers whether a mechanism is likely to be operative in the production of human disease by tobacco smoke. This evidence is relevant to understanding how smoking causes disease, to identifying those who may be particularly susceptible, and to assessing the potential risks of tobacco products.
Eosinophils in Health and Disease provides immunology researchers and students with a comprehensive overview of current thought and cutting-edge eosinophil research, providing chapters on basic science, disease-specific issues, therapeutics, models for study and areas of emerging importance.
Knowledge about the mechanisms of lung development has been growing rapidly, especially with regard to cellular and molecular aspects of growth and differentiation. This authoritative international volume reviews key aspects of lung development in health and disease by providing a comprehensive review of the complex series of cellular and molecular interactions required for lung development. It covers such topics as pulmonary hypoplasia, effects of malnutrition, and pulmaonary angiogenesis. An indispensable reference for all those involved in studying or treating lung disease in neonates and children, the book offers a unique view of the development of this essential organ.
Cerebrospinal Fluid in Neurologic Disorders, Volume 146 provides a brief overview on the current use of CSF in clinical routine, the physiology of CSF, and its usefulness and potential as a biomarker. The second part addresses the main purpose of the volume, describing CSF from a research perspective in context with the most important diagnostic entities in neurology. The book's authors provide insight into the current understanding of CSF changes in these various conditions and what it tells us about the nature of neurological diseases. Furthermore, methodological aspects are discussed, as are shortcomings that need to be addressed. Finally, the book provides an outlook for potential directions that can be explored to improve the various aspects of CSF research with the ultimate goal of being incorporated in clinical practice. Provides a brief overview on the current use of CSF in clinical routine, the physiology of CSF, and its usefulness and potential as a biomarker Addresses relevant research in context with the most important diagnostic entities in neurology Edited by leading authors in CSF research from around the globe, presenting the broadest, most expert coverage available
Provides an overview of the structure, transcription regulation and binding characteristics of cellular adhesion molecules and their ligands in the maintenance of function, immunological reactions and inflammatory processes with organ systems. The text examines the role of adhesion molecules in biological processes such as morphogenesis, blood coagulation, tumour metastasis, bone tissue remodelling and transplant rejection.
Many physiological conditions such as host defense or aging and pathological conditions such as neurodegenerative diseases, and diabetes are associated with the accumulation of high levels of reactive oxygen species and reactive nitrogen species. This generates a condition called oxidative stress. Low levels of reactive oxygen species, however, which are continuously produced during aerobic metabolism, function as important signaling molecules, setting the metabolic pace of cells and regulating processes ranging from gene expression to apoptosis. For this book we would like to recruit the experts in the field of redox chemistry, bioinformatics and proteomics, redox signaling and oxidative stress biology to discuss how organisms achieve the appropriate redox balance, the mechanisms that lead to oxidative stress conditions and the physiological consequences that contribute to aging and disease.