Download Free Adaptive Control Approach For Software Quality Improvement Book in PDF and EPUB Free Download. You can read online Adaptive Control Approach For Software Quality Improvement and write the review.

This book focuses on the topic of improving software quality using adaptive control approaches. As software systems grow in complexity, some of the central challenges include their ability to self-manage and adapt at run time, responding to changing user needs and environments, faults, and vulnerabilities. Control theory approaches presented in the book provide some of the answers to these challenges. The book weaves together diverse research topics (such as requirements engineering, software development processes, pervasive and autonomic computing, service-oriented architectures, on-line adaptation of software behavior, testing and QoS control) into a coherent whole. Written by world-renowned experts, this book is truly a noteworthy and authoritative reference for students, researchers and practitioners to better understand how the adaptive control approach can be applied to improve the quality of software systems. Book chapters also outline future theoretical and experimental challenges for researchers in this area.
This book focuses on the topic of improving software quality using adaptive control approaches. As software systems grow in complexity, some of the central challenges include their ability to self-manage and adapt at run time, responding to changing user needs and environments, faults, and vulnerabilities. Control theory approaches presented in the book provide some of the answers to these challenges. The book weaves together diverse research topics (such as requirements engineering, software development processes, pervasive and autonomic computing, service-oriented architectures, on-line adaptation of software behavior, testing and QoS control) into a coherent whole. Written by world-renowned experts, this book is truly a noteworthy and authoritative reference for students, researchers and practitioners to better understand how the adaptive control approach can be applied to improve the quality of software systems. Book chapters also outline future theoretical and experimental challenges for researchers in this area.
Software Quality Assurance in Large Scale and Complex Software-intensive Systems presents novel and high-quality research related approaches that relate the quality of software architecture to system requirements, system architecture and enterprise-architecture, or software testing. Modern software has become complex and adaptable due to the emergence of globalization and new software technologies, devices and networks. These changes challenge both traditional software quality assurance techniques and software engineers to ensure software quality when building today (and tomorrow's) adaptive, context-sensitive, and highly diverse applications. This edited volume presents state of the art techniques, methodologies, tools, best practices and guidelines for software quality assurance and offers guidance for future software engineering research and practice. Each contributed chapter considers the practical application of the topic through case studies, experiments, empirical validation, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited, to: quality attributes of system/software architectures; aligning enterprise, system, and software architecture from the point of view of total quality; design decisions and their influence on the quality of system/software architecture; methods and processes for evaluating architecture quality; quality assessment of legacy systems and third party applications; lessons learned and empirical validation of theories and frameworks on architectural quality; empirical validation and testing for assessing architecture quality. - Focused on quality assurance at all levels of software design and development - Covers domain-specific software quality assurance issues e.g. for cloud, mobile, security, context-sensitive, mash-up and autonomic systems - Explains likely trade-offs from design decisions in the context of complex software system engineering and quality assurance - Includes practical case studies of software quality assurance for complex, adaptive and context-critical systems
Advances in computing hardware and algorithms have dramatically improved the ability to simulate complex processes computationally. Today's simulation capabilities offer the prospect of addressing questions that in the past could be addressed only by resource-intensive experimentation, if at all. Assessing the Reliability of Complex Models recognizes the ubiquity of uncertainty in computational estimates of reality and the necessity for its quantification. As computational science and engineering have matured, the process of quantifying or bounding uncertainties in a computational estimate of a physical quality of interest has evolved into a small set of interdependent tasks: verification, validation, and uncertainty of quantification (VVUQ). In recognition of the increasing importance of computational simulation and the increasing need to assess uncertainties in computational results, the National Research Council was asked to study the mathematical foundations of VVUQ and to recommend steps that will ultimately lead to improved processes. Assessing the Reliability of Complex Models discusses changes in education of professionals and dissemination of information that should enhance the ability of future VVUQ practitioners to improve and properly apply VVUQ methodologies to difficult problems, enhance the ability of VVUQ customers to understand VVUQ results and use them to make informed decisions, and enhance the ability of all VVUQ stakeholders to communicate with each other. This report is an essential resource for all decision and policy makers in the field, students, stakeholders, UQ experts, and VVUQ educators and practitioners.
Presented in a tutorial style, this comprehensive treatment unifies, simplifies, and explains most of the techniques for designing and analyzing adaptive control systems. Numerous examples clarify procedures and methods. 1995 edition.
A concise and practical introduction to the foundations and engineering principles of self-adaptation Though it has recently gained significant momentum, the topic of self-adaptation remains largely under-addressed in academic and technical literature. This book changes that. Using a systematic and holistic approach, An Introduction to Self-adaptive Systems: A Contemporary Software Engineering Perspective provides readers with an accessible set of basic principles, engineering foundations, and applications of self-adaptation in software-intensive systems. It places self-adaptation in the context of techniques like uncertainty management, feedback control, online reasoning, and machine learning while acknowledging the growing consensus in the software engineering community that self-adaptation will be a crucial enabling feature in tackling the challenges of new, emerging, and future systems. The author combines cutting-edge technical research with basic principles and real-world insights to create a practical and strategically effective guide to self-adaptation. He includes features such as: An analysis of the foundational engineering principles and applications of self-adaptation in different domains, including the Internet-of-Things, cloud computing, and cyber-physical systems End-of-chapter exercises at four different levels of complexity and difficulty An accompanying author-hosted website with slides, selected exercises and solutions, models, and code Perfect for researchers, students, teachers, industry leaders, and practitioners in fields that directly or peripherally involve software engineering, as well as those in academia involved in a class on self-adaptivity, this book belongs on the shelves of anyone with an interest in the future of software and its engineering.
The carefully reviewed papers in this state-of-the-art survey describe a wide range of approaches coming from different strands of software engineering, and look forward to future challenges facing this ever-resurgent and exacting field of research.