Download Free Adapting Graph Simulation Algorithms For Graph Database Query Processing Book in PDF and EPUB Free Download. You can read online Adapting Graph Simulation Algorithms For Graph Database Query Processing and write the review.

Discover how graph databases can help you manage and query highly connected data. With this practical book, you’ll learn how to design and implement a graph database that brings the power of graphs to bear on a broad range of problem domains. Whether you want to speed up your response to user queries or build a database that can adapt as your business evolves, this book shows you how to apply the schema-free graph model to real-world problems. Learn how different organizations are using graph databases to outperform their competitors. With this book’s data modeling, query, and code examples, you’ll quickly be able to implement your own solution. Model data with the Cypher query language and property graph model Learn best practices and common pitfalls when modeling with graphs Plan and implement a graph database solution in test-driven fashion Explore real-world examples to learn how and why organizations use a graph database Understand common patterns and components of graph database architecture Use analytical techniques and algorithms to mine graph database information
This book constitutes the refereed joint proceedings of seven international workshops held in conjunction with the 25th International Conference on Conceptual Modeling, ER 2006, in Tucson, AZ, USA in November 2006. The 39 revised full papers presented together with the outlines of three tutorials were carefully reviewed and selected from 95 submissions.
Discover how graph databases can help you manage and query highly connected data. With this practical book, you’ll learn how to design and implement a graph database that brings the power of graphs to bear on a broad range of problem domains. Whether you want to speed up your response to user queries or build a database that can adapt as your business evolves, this book shows you how to apply the schema-free graph model to real-world problems. This second edition includes new code samples and diagrams, using the latest Neo4j syntax, as well as information on new functionality. Learn how different organizations are using graph databases to outperform their competitors. With this book’s data modeling, query, and code examples, you’ll quickly be able to implement your own solution. Model data with the Cypher query language and property graph model Learn best practices and common pitfalls when modeling with graphs Plan and implement a graph database solution in test-driven fashion Explore real-world examples to learn how and why organizations use a graph database Understand common patterns and components of graph database architecture Use analytical techniques and algorithms to mine graph database information
Graph databases provide a natural way of storing and querying graph data. In contrast to relational databases, queries over graph databases enable to refer directly to the graph structure of such graph data. For example, graph pattern matching can be employed to formulate queries over graph data. However, as for relational databases running complex queries can be very time-consuming and ruin the interactivity with the database. One possible approach to deal with this performance issue is to employ database views that consist of pre-computed answers to common and often stated queries. But to ensure that database views yield consistent query results in comparison with the data from which they are derived, these database views must be updated before queries make use of these database views. Such a maintenance of database views must be performed efficiently, otherwise the effort to create and maintain views may not pay off in comparison to processing the queries directly on the data from which the database views are derived. At the time of writing, graph databases do not support database views and are limited to graph indexes that index nodes and edges of the graph data for fast query evaluation, but do not enable to maintain pre-computed answers of complex queries over graph data. Moreover, the maintenance of database views in graph databases becomes even more challenging when negation and recursion have to be supported as in deductive relational databases. In this technical report, we present an approach for the efficient and scalable incremental graph view maintenance for deductive graph databases. The main concept of our approach is a generalized discrimination network that enables to model nested graph conditions including negative application conditions and recursion, which specify the content of graph views derived from graph data stored by graph databases. The discrimination network enables to automatically derive generic maintenance rules using graph transformations for maintaining graph views in case the graph data from which the graph views are derived change. We evaluate our approach in terms of a case study using multiple data sets derived from open source projects.
Summary Neo4j in Action is a comprehensive guide to Neo4j, aimed at application developers and software architects. Using hands-on examples, you'll learn to model graph domains naturally with Neo4j graph structures. The book explores the full power of native Java APIs for graph data manipulation and querying. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Much of the data today is highly connected—from social networks to supply chains to software dependency management—and more connections are continually being uncovered. Neo4j is an ideal graph database tool for highly connected data. It is mature, production-ready, and unique in enabling developers to simply and efficiently model and query connected data. About the Book Neo4j in Action is a comprehensive guide to designing, implementing, and querying graph data using Neo4j. Using hands-on examples, you'll learn to model graph domains naturally with Neo4j graph structures. The book explores the full power of native Java APIs for graph data manipulation and querying. It also covers Cypher, Neo4j's graph query language. Along the way, you'll learn how to integrate Neo4j into your domain-driven app using Spring Data Neo4j, as well as how to use Neo4j in standalone server or embedded modes. Knowledge of Java basics is required. No prior experience with graph data or Neo4j is assumed. What's Inside Graph database patterns How to model data in social networks How to use Neo4j in your Java applications How to configure and set up Neo4j About the Authors Aleksa Vukotic is an architect specializing in graph data models. Nicki Watt, Dominic Fox, Tareq Abedrabbo, and Jonas Partner work at OpenCredo, a Neo Technology partner, and have been involved in many projects using Neo4j. Table of Contents PART 1 INTRODUCTION TO NEO4J A case for a Neo4j database Data modeling in Neo4j Starting development with Neo4j The power of traversals Indexing the data PART 2 APPLICATION DEVELOPMENT WITH NEO4J Cypher: Neo4j query language Transactions Traversals in depth Spring Data Neo4j PART 3 NEO4J IN PRODUCTION Neo4j: embedded versus server mode
Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions. This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection. Learn how graph analytics vary from conventional statistical analysis Understand how classic graph algorithms work, and how they are applied Get guidance on which algorithms to use for different types of questions Explore algorithm examples with working code and sample datasets from Spark and Neo4j See how connected feature extraction can increase machine learning accuracy and precision Walk through creating an ML workflow for link prediction combining Neo4j and Spark
This book presents a comprehensive overview of fundamental issues and recent advances in graph data management. Its aim is to provide beginning researchers in the area of graph data management, or in fields that require graph data management, an overview of the latest developments in this area, both in applied and in fundamental subdomains. The topics covered range from a general introduction to graph data management, to more specialized topics like graph visualization, flexible queries of graph data, parallel processing, and benchmarking. The book will help researchers put their work in perspective and show them which types of tools, techniques and technologies are available, which ones could best suit their needs, and where there are still open issues and future research directions. The chapters are contributed by leading experts in the relevant areas, presenting a coherent overview of the state of the art in the field. Readers should have a basic knowledge of data management techniques as they are taught in computer science MSc programs.
This book provides a comprehensive and accessible introduction to knowledge graphs, which have recently garnered notable attention from both industry and academia. Knowledge graphs are founded on the principle of applying a graph-based abstraction to data, and are now broadly deployed in scenarios that require integrating and extracting value from multiple, diverse sources of data at large scale. The book defines knowledge graphs and provides a high-level overview of how they are used. It presents and contrasts popular graph models that are commonly used to represent data as graphs, and the languages by which they can be queried before describing how the resulting data graph can be enhanced with notions of schema, identity, and context. The book discusses how ontologies and rules can be used to encode knowledge as well as how inductive techniques—based on statistics, graph analytics, machine learning, etc.—can be used to encode and extract knowledge. It covers techniques for the creation, enrichment, assessment, and refinement of knowledge graphs and surveys recent open and enterprise knowledge graphs and the industries or applications within which they have been most widely adopted. The book closes by discussing the current limitations and future directions along which knowledge graphs are likely to evolve. This book is aimed at students, researchers, and practitioners who wish to learn more about knowledge graphs and how they facilitate extracting value from diverse data at large scale. To make the book accessible for newcomers, running examples and graphical notation are used throughout. Formal definitions and extensive references are also provided for those who opt to delve more deeply into specific topics.
SIGMOD/PODS'17: International Conference on Management of Data May 14, 2017-May 19, 2017 Chicago, USA. You can view more information about this proceeding and all of ACM�s other published conference proceedings from the ACM Digital Library: http://www.acm.org/dl.