Download Free Active Vision Book in PDF and EPUB Free Download. You can read online Active Vision and write the review.

This title focuses on vision as an active process, rather than a passive activity and provides an integrated account of seeing and looking. The authors give a thorough description of basic details of the visual and oculomotor systems necessary to understand active vision.
Active Vision explores important themes emerging from the active vision paradigm, which has only recently become an established area of machine vision. In four parts the contributions look in turn at tracking, control of vision heads, geometric and task planning, and architectures and applications, presenting research that marks a turning point for both the tasks and the processes of computer vision. The eighteen chapters in Active Vision draw on traditional work in computer vision over the last two decades, particularly in the use of concepts of geometrical modeling and optical flow; however, they also concentrate on relatively new areas such as control theory, recursive statistical filtering, and dynamical modeling. Active Vision documents a change in emphasis, one that is based on the premise that an observer (human or computer) may be able to understand a visual environment more effectively and efficiently if the sensor interacts with that environment, moving through and around it, culling information selectively, and analyzing visual sensory data purposefully in order to answer specific queries posed by the observer. This method is in marked contrast to the more conventional, passive approach to computer vision where the camera is supposed to take in the whole scene, attempting to make sense of all that it sees. Andrew Blake is Lecturer in Engineering Science at the University of Oxford Alan Yuille is Associate Professor in the Division of Applied Sciences at Harvard University.
T. Viéville: A Few Steps Towards 3D Active Vision appears as Vol. 33 in the Springer Series in Information Sciences. A specific problem in the field of active vision is analyzed, namely how suitable is it to explicitly use 3D visual cues in a reactive visual task? The author has collected a set of studies on this subject and has used these experimental and theoretical developments to propose a synthetic view on the problem, completed by some specific experiments. With this book scientists and graduate students will have a complete set of methods, algorithms, and experiments to introduce 3D visual cues in active visual perception mechanisms, e.g. autocalibration of visual sensors on robotic heads and mobile robots. Analogies with biological visual systems provide an easy introduction to this subject.
This unique book explores the important issues in studying for active visual perception. The book’s eleven chapters draw on recent important work in robot vision over ten years, particularly in the use of new concepts. Implementation examples are provided with theoretical methods for testing in a real robot system. With these optimal sensor planning strategies, this book will give the robot vision system the adaptability needed in many practical applications.
This book addresses an area of perception engineering which deals with constructive processes. A model of the environment is analyzed using the information acquired from mUltiple viewpoints of multiple disparate sensors at multiple time instants. Although the role of successive model building and active exploration of the environment, as is discussed in this book, is of great importance, only a few researchers of machine perception have thus far addressed the problem in these directions. Krotkov's book, which is a modification and continuation of his highly successful dissertation, focuses on active exploratory sensing in the context of spatial layout perception. He uses stereo and focus to obtain distance By information, and to eventually develop cooperative combining techniques. means of a stereo system with verging cameras, it is demonstrated that the distance measurements can be significantly improved by combining two sources. In addition, the problem of merging information from the multiple views is discussed in detail. As the field of perception engineering seems to be of growing scientific and applied importance, both practitioners and researchers in machine perception will find this book a valuable addition to their libraries. RameshJain Series Editor Acknowledgements I would like to thank Professor Ruzena Bajcsy for her constant encouragement and guidance during the five years of research leading to the dissertation upon which this book is based. Without her help in all matters, this work would never have been possible.
Active Contours deals with the analysis of moving images - a topic of growing importance within the computer graphics industry. In particular it is concerned with understanding, specifying and learning prior models of varying strength and applying them to dynamic contours. Its aim is to develop and analyse these modelling tools in depth and within a consistent framework.
Although we routinely take our vision to be veridical representations of reality, in actuality we choose (albeit unwittingly) or construct what we see. By movements of the eyes, the direction of our gaze, we create meaning. The author offers a reformulation of perception and its neural underpinnings, focusing on the active nature of perception. In his investigation of active perception and its brain mechanisms, he offers the gaze as the principal paradigm for perception. He discusses the dynamic and constrained nature of perception; the complex information processing at the level of the retina; the active nature of vision; the intensive nature of representations; the gaze of others as visual stimulus; and the intentionality of vision and consciousness.
This book describes active illumination techniques in computer vision. We can classify computer vision techniques into two classes: passive and active techniques. Passive techniques observe the scene statically and analyse it as is. Active techniques give the scene some actions and try to facilitate the analysis. In particular, active illumination techniques project specific light, for which the characteristics are known beforehand, to a target scene to enable stable and accurate analysis of the scene. Traditional passive techniques have a fundamental limitation. The external world surrounding us is three-dimensional; the image projected on a retina or an imaging device is two-dimensional. That is, reduction of one dimension has occurred. Active illumination techniques compensate for the dimensional reduction by actively controlling the illumination. The demand for reliable vision sensors is rapidly increasing in many application areas, such as robotics and medical image analysis. This book explains this new endeavour to explore the augmentation of reduced dimensions in computer vision. This book consists of three parts: basic concepts, techniques, and applications. The first part explains the basic concepts for understanding active illumination techniques. In particular, the basic concepts of optics are explained so that researchers and engineers outside the field can understand the later chapters. The second part explains currently available active illumination techniques, covering many techniques developed by the authors. The final part shows how such active illumination techniques can be applied to various domains, describing the issue to be overcome by active illumination techniques and the advantages of using these techniques. This book is primarily aimed at 4th year undergraduate and 1st year graduate students, and will also help engineers from fields beyond computer vision to use active illumination techniques. Additionally, the book is suitable as course material for technical seminars.
Artificial Vision is a rapidly growing discipline, aiming to build computational models of the visual functionalities in humans, as well as machines that emulate them. Visual communication in itself involves a numberof challenging topics with a dramatic impact on contemporary culture where human-computer interaction and human dialogue play a more and more significant role. This state-of-the-art book brings together carefully selected review articles from world renowned researchers at the forefront of this exciting area. The contributions cover topics including image processing, computational geometry, optics, pattern recognition, and computer science. The book is divided into three sections. Part I covers active vision; Part II deals with the integration of visual with cognitive capabilities; and Part III concerns visual communication. Artificial Vision will be essential reading for students and researchers in image processing, vision, and computer science who want to grasp the current concepts and future directions of this challenging field. This state-of-the-art book brings together selected review articles and accounts of current projects from world-renowned researchers at the forefront of this exciting area. The contributions cover topics such as: - Psychology of perception - Image processing - Computational geometry - Visual knowledge representation and languages It is this truly multi-disciplinary approach that has produced successful theories and applications for the subject.
Intelligent robotics has become the focus of extensive research activity. This effort has been motivated by the wide variety of applications that can benefit from the developments. These applications often involve mobile robots, multiple robots working and interacting in the same work area, and operations in hazardous environments like nuclear power plants. Applications in the consumer and service sectors are also attracting interest. These applications have highlighted the importance of performance, safety, reliability, and fault tolerance. This volume is a selection of papers from a NATO Advanced Study Institute held in July 1989 with a focus on active perception and robot vision. The papers deal with such issues as motion understanding, 3-D data analysis, error minimization, object and environment modeling, object detection and recognition, parallel and real-time vision, and data fusion. The paradigm underlying the papers is that robotic systems require repeated and hierarchical application of the perception-planning-action cycle. The primary focus of the papers is the perception part of the cycle. Issues related to complete implementations are also discussed.