Download Free Active Pharmaceutical Ingredients Book in PDF and EPUB Free Download. You can read online Active Pharmaceutical Ingredients and write the review.

Presents the most effective catalytic reactions in use today, with a special focus on process intensification, sustainability, waste reduction, and innovative methods This book demonstrates the importance of efficient catalytic transformations for producing pharmaceutically active molecules. It presents the key catalytic reactions and the most efficient catalytic processes, including their significant advantages over compared previous methods. It also places a strong emphasis on asymmetric catalytic reactions, process intensification (PI), sustainability and waste mitigation, continuous manufacturing processes as enshrined by continuous flow catalysis, and supported catalysis. Active Pharmaceutical Ingredients in Synthesis: Catalytic Processes in Research and Development offers chapters covering: Catalysis and Prerequisites for the Modern Pharmaceutial Industry Landscape; Catalytic Process Design - The Industrial Perspective; Hydrogenation, Hydroformylation and Other Reductions; Oxidation; ; Catalytic Addition Reactions; Catalytic Cross-Coupling Reactions; Catalytic Metathesis Reactions; Catalytic Cycloaddition Reactions: Coming Full-Circle; Catalytic Cyclopropanation Reactions; Catalytic C-H insertion Reactions; Phase Transfer Catalysis; and Biocatalysis. -Provides the reader with an updated clear view of the current state of the challenging field of catalysis for API production -Focuses on the application of catalytic methods for the synthesis of known APIs -Presents every key reaction, including Diels-Alder, CH Insertions, Metal-catalytic coupling-reactions, and many more -Includes recent patent literature for completeness Covering a topic of great interest for synthetic chemists and R&D researchers in the pharmaceutical industry, Active Pharmaceutical Ingredients in Synthesis: Catalytic Processes in Research and Development is a must-read for every synthetic chemist working with APIs.
Focusing on the three most critical components that successfully bring an API to market-process development, manufacturing, and governmental regulation and approval-this reference serves as a step-by-step guide to the planning and clear understanding of the bulk manufacturing of APIs. This guide offers current and timely discussions of the process development cycle, design engineering, the approval process, quality control and assurance, and validation, as well as plant manufacturing activities including materials management, maintenance, and safety.
This book presents important developments and applications of green chemistry, especially in the field of organic chemistry. The chapters give a brief account of green organic reactions in water, green organic reactions using microwave and in solvent-free conditions. In depth discussions on the green aspects of ionic liquids, flow reactions, and recoverable catalysts are provided in this book. An exclusive chapter devoted to green Lewis acid is also included. The potential of supercritical fluids as green solvents in various areas of organic reactions is explained as well. This book will be a valuable reference for beginners as well as advanced researchers interested in green organic chemistry.
A guide to the development and manufacturing of pharmaceutical products written for professionals in the industry, revised second edition The revised and updated second edition of Chemical Engineering in the Pharmaceutical Industry is a practical book that highlights chemistry and chemical engineering. The book’s regulatory quality strategies target the development and manufacturing of pharmaceutically active ingredients of pharmaceutical products. The expanded second edition contains revised content with many new case studies and additional example calculations that are of interest to chemical engineers. The 2nd Edition is divided into two separate books: 1) Active Pharmaceutical Ingredients (API’s) and 2) Drug Product Design, Development and Modeling. The active pharmaceutical ingredients book puts the focus on the chemistry, chemical engineering, and unit operations specific to development and manufacturing of the active ingredients of the pharmaceutical product. The drug substance operations section includes information on chemical reactions, mixing, distillations, extractions, crystallizations, filtration, drying, and wet and dry milling. In addition, the book includes many applications of process modeling and modern software tools that are geared toward batch-scale and continuous drug substance pharmaceutical operations. This updated second edition: Contains 30new chapters or revised chapters specific to API, covering topics including: manufacturing quality by design, computational approaches, continuous manufacturing, crystallization and final form, process safety Expanded topics of scale-up, continuous processing, applications of thermodynamics and thermodynamic modeling, filtration and drying Presents updated and expanded example calculations Includes contributions from noted experts in the field Written for pharmaceutical engineers, chemical engineers, undergraduate and graduate students, and professionals in the field of pharmaceutical sciences and manufacturing, the second edition of Chemical Engineering in the Pharmaceutical Industryf ocuses on the development and chemical engineering as well as operations specific to the design, formulation, and manufacture of drug substance and products.
Pain is both a symptom and a disease. It manifests in multiple forms and its treatment is complex. Physical, social, economic, and emotional consequences of pain can impair an individual's overall health, well-being, productivity, and relationships in myriad ways. The impact of pain at a population level is vast and, while estimates differ, the Centers for Disease Control and Prevention reported that 50 million U.S. adults are living in pain. In terms of pain's global impact, estimates suggest the problem affects approximately 1 in 5 adults across the world, with nearly 1 in 10 adults newly diagnosed with chronic pain each year. In recent years, the issues surrounding the complexity of pain management have contributed to increased demand for alternative strategies for treating pain. One such strategy is to expand use of topical pain medicationsâ€"medications applied to intact skin. This nonoral route of administration for pain medication has the potential benefit, in theory, of local activity and fewer systemic side effects. Compounding is an age-old pharmaceutical practice of combining, mixing, or adjusting ingredients to create a tailored medication to meet the needs of a patient. The aim of compounding, historically, has been to provide patients with access to therapeutic alternatives that are safe and effective, especially for people with clinical needs that cannot otherwise be met by commercially available FDA-approved drugs. Compounded Topical Pain Creams explores issues regarding the safety and effectiveness of the ingredients in these pain creams. This report analyzes the available scientific data relating to the ingredients used in compounded topical pain creams and offers recommendations regarding the treatment of patients.
Much has happened in the area of bulk pharmaceutical good manufacturing practice (GMP) and validation since the first publication of Validation of Active Pharmaceutical Ingredients. Revised, updated, and expanded, this second edition includes new chapters addressing postapproval changes, technology transfer, international cGMP guidelines/FDA guidance progress, and facility inspection issues. The basic philosophy and principles of GMP and validation have not changed, but new terminology had been introduced, and old terminology had been better defined, improving the understanding of related concepts and principles. The book gives you a working knowledge of the regulatory process that will facilitate your organization's compliance with regulations.
A one-stop reference that reviews protein design strategies to applications in industrial and medical biotechnology Protein Engineering: Tools and Applications is a comprehensive resource that offers a systematic and comprehensive review of the most recent advances in the field, and contains detailed information on the methodologies and strategies behind these approaches. The authors—noted experts on the topic—explore the distinctive advantages and disadvantages of the presented methodologies and strategies in a targeted and focused manner that allows for the adaptation and implementation of the strategies for new applications. The book contains information on the directed evolution, rational design, and semi-rational design of proteins and offers a review of the most recent applications in industrial and medical biotechnology. This important book: Covers technologies and methodologies used in protein engineering Includes the strategies behind the approaches, designed to help with the adaptation and implementation of these strategies for new applications Offers a comprehensive and thorough treatment of protein engineering from primary strategies to applications in industrial and medical biotechnology Presents cutting edge advances in the continuously evolving field of protein engineering Written for students and professionals of bioengineering, biotechnology, biochemistry, Protein Engineering: Tools and Applications offers an essential resource to the design strategies in protein engineering and reviews recent applications.
A guide to the important chemical engineering concepts for the development of new drugs, revised second edition The revised and updated second edition of Chemical Engineering in the Pharmaceutical Industry offers a guide to the experimental and computational methods related to drug product design and development. The second edition has been greatly expanded and covers a range of topics related to formulation design and process development of drug products. The authors review basic analytics for quantitation of drug product quality attributes, such as potency, purity, content uniformity, and dissolution, that are addressed with consideration of the applied statistics, process analytical technology, and process control. The 2nd Edition is divided into two separate books: 1) Active Pharmaceutical Ingredients (API’s) and 2) Drug Product Design, Development and Modeling. The contributors explore technology transfer and scale-up of batch processes that are exemplified experimentally and computationally. Written for engineers working in the field, the book examines in-silico process modeling tools that streamline experimental screening approaches. In addition, the authors discuss the emerging field of continuous drug product manufacturing. This revised second edition: Contains 21 new or revised chapters, including chapters on quality by design, computational approaches for drug product modeling, process design with PAT and process control, engineering challenges and solutions Covers chemistry and engineering activities related to dosage form design, and process development, and scale-up Offers analytical methods and applied statistics that highlight drug product quality attributes as design features Presents updated and new example calculations and associated solutions Includes contributions from leading experts in the field Written for pharmaceutical engineers, chemical engineers, undergraduate and graduation students, and professionals in the field of pharmaceutical sciences and manufacturing, Chemical Engineering in the Pharmaceutical Industry, Second Edition contains information designed to be of use from the engineer's perspective and spans information from solid to semi-solid to lyophilized drug products.
This volume provides an insight into the future strategies for commercial biocatalysis with a focus on sustainable technologies, together with chemoenzymatic and biotechnological approaches to synthesize various types of approved and new active pharmaceutical ingredients (APIs) via proven and latest synthetic routes using single-step biocatalytic or enzyme cascade reactions. Many of these drugs act as enzyme inhibitors, as discussed in a chapter with a variety of examples. The targeted enzymes are involved in diseases such as different cancers, metastatic and infectious diseases, osteoporosis, and cardiovascular disorders. The biocatalysts employed for API synthesis include hydrolytic enzymes, alcohol dehydrogenases, laccases, imine reductases, reductive aminases, peroxygenases, cytochrome P450 enzymes, polyketide synthases, transaminases, and halogenases. Many of them have been improved with respect to their properties by engineering methods. The book discusses the syntheses of drugs, including alkaloids and antibiotics, non-ribosomal peptides, antimalarial and antidiabetic drugs, prenylated xanthones, antioxidants, and many important (chiral) intermediates required for the synthesis of pharmaceuticals.