Download Free Active And Quasi Optical Arrays For Solid State Power Combining Book in PDF and EPUB Free Download. You can read online Active And Quasi Optical Arrays For Solid State Power Combining and write the review.

A detailed and timely overview of recent developments in active quasi-optical arrays In recent years, active quasi-optics has emerged as one of the most dynamic fields of contemporary research—a highly unconventional approach to microwave and millimeter-wave power generation that integrates solid-state devices into a single quasi-optical component in which all devices operate in unison. This book defines and describes active quasi-optical arrays, reviews the current state of the art, and answers numerous basic and technical questions on the design, analysis, and application of these devices. The contributors to this volume are leading researchers in the field who present results and views from government, industrial, and university laboratories and offer a balanced discussion on a high technical level. They also offer insight into the applicability and commercial value of this technology for military systems, manufacturing processes, communications, and consumer products. Topics presented include: Analysis and design methodologies for quasi-optical active arrays Power-added and power-combining efficiencies of quasi-optical amplifier arrays Phase-shifterless beam steering in oscillator and amplifier arrays Integrating quasi-optical active components into a compact subsystem Design and fabrication of quasi-optical oscillators, amplifiers, multipliers, and tuners Characterization and measurement of quasi-optical components
Provides systematic coverage of the theory, physics, functional designs, and engineering applications of advanced electromagnetic surfaces.
Electrical Engineering Active Antennas and Quasi-Optical Arrays Whether communications, radar, transportation, or defense drives your interest in solid-state devices at microwave and millimeter-wave frequencies, this ready reference book provides you with a useful review of quasi-optical power combining and active integrated antennas. Brought to you in one convenient volume are key reprinted papers from leading experts in microwave technology. Their valuable perspectives range from the most current advances to historical developments. Included as a special feature is an invited paper, never-before-published, which presents an overview of quasi-optical power combining by noted authority J. W. Mink and colleagues. You will discover other helpful highlighted topics such as: Transmitting and receiving active antennas Spatial power combining oscillators Spatial combining amplifiers Beam control Active integrated antennas and quasi-optical systems Analysis and CAD Emerging technologies—two dimensional quasi-optics
This text discusses electromagnetics from the view of operator theory, in a manner more commonly seen in textbooks of quantum mechanics. It includes a self-contained introduction to operator theory, presenting definitions and theorems, plus proofs of the theorems when these are simple or enlightening.
Describing an innovative approach to phased-array control in antenna design This book explores in detail phased-array antennas that use coupled-oscillator arrays, an arrangement featuring a remarkably simple beam steering control system and a major reduction in complexity compared with traditional methods of phased-array control. It brings together in one convenient, self-contained volume the many salient research results obtained over the past ten to fifteen years in laboratories around the world, including the California Institute of Technology's Jet Propulsion Laboratory. The authors examine the underlying theoretical framework of coupled-oscillator systems, clearly explaining the linear and nonlinear formalisms used in the development of coupled-oscillator arrays, while introducing a variety of state-of-the-art methodologies, design solutions, and tools for applying this control scheme. Readers will find: Numerous implementation examples of coupled-oscillator array prototypes A continuum model that permits application of diffusion theory to the analysis of phase dynamics A demonstration of the array behavior through experimental results that validate the linearized theory Examples of how incorporating coupling delay restores causality, including the latest published results Guidance on how to accurately analyze and optimize coupled-oscillator arrays using modern simulation tools A review of current developments, including the design of compact couple-oscillator array antennas Complete with 150 diagrams and photographs, Coupled-Oscillator Based Active-Array Antennas is a highly useful tutorial for antenna designers and a valuable reference for researchers and engineers wishing to learn about this cutting-edge technology.
A much-needed, up-to-date guide to the rapidly growing area of RF circuit design, this book walks readers through a whole range of new and improved techniques for the analysis and design of receiver and transmitter circuits, illustrating them through examples from modern-day communications systems. The application of MMIC to RF design is also discussed.
The definitive text on microwave ring circuits-now better than ever For the past three decades, the ring resonator has been widely used in such applications as measurements, filters, oscillators, mixers, couplers, power dividers/combiners, antennas, and frequency-selective surfaces, to name just a few. The field has continued to expand, with many new analyses, models, and applications recently reported. Microwave Ring Circuits and Related Structures has long been the only text fully dedicated to the treatment of ring resonators. The second edition has been thoroughly revised to reflect the most current developments in the field. In addition to updating all the original material, the authors have added extensive new coverage on: * A universal model for both rectangular and circular ring configurations * Applications of ring structures for all types of planar circuits * A new transmission line analysis * An abundance of new applications in bandpass and bandstop filters, couplers, oscillators, and antennas While retaining all the features that made the original text so useful to both students and teachers in the field, the second edition seeks to introduce the analysis and models of ring resonators and to apply them to both the old and the new applications, including microstrip, slotline, coplanar waveguide, and waveguide transmission lines. Based on dissertations and papers published by graduate students, scholars, and research associates at A&M University, Microwave Ring Circuits and Related Structures, Second Edition is sure to be a valuable addition to both engineering classrooms and research libraries in the field.
The first edition of “Microstrip Filters for RF/Microwave Applications” was published in 2001. Over the years the book has been well received and is used extensively in both academia and industry by microwave researchers and engineers. From its inception as a manuscript the book is almost 8 years old. While the fundamentals of filter circuits have not changed, further innovations in filter realizations and other applications have occurred with changes in the technology and use of new fabrication processes, such as the recent advances in RF MEMS and ferroelectric films for tunable filters; the use of liquid crystal polymer (LCP) substrates for multilayer circuits, as well as the new filters for dual-band, multi-band and ultra wideband (UWB) applications. Although the microstrip filter remains as the main transmission line medium for these new developments, there has been a new trend of using combined planar transmission line structures such as co-planar waveguide (CPW) and slotted ground structures for novel physical implementations beyond the single layer in order to achieve filter miniaturization and better performance. Also, over the years, practitioners have suggested topics that should be added for completeness, or deleted in some cases, as they were not very useful in practice. In view of the above, the authors are proposing a revised version of the “Microstrip Filters for RF/Microwave Applications” text and a slightly changed book title of “Planar Filters for RF/Microwave Applications” to reflect the aforementioned trends in the revised book.
Important new insights into how various components and systems evolved Premised on the idea that one cannot know a science without knowing its history, History of Wireless offers a lively new treatment that introduces previously unacknowledged pioneers and developments, setting a new standard for understanding the evolution of this important technology. Starting with the background-magnetism, electricity, light, and Maxwell's Electromagnetic Theory-this book offers new insights into the initial theory and experimental exploration of wireless. In addition to the well-known contributions of Maxwell, Hertz, and Marconi, it examines work done by Heaviside, Tesla, and passionate amateurs such as the Kentucky melon farmer Nathan Stubblefield and the unsung hero Antonio Meucci. Looking at the story from mathematical, physics, technical, and other perspectives, the clearly written text describes the development of wireless within a vivid scientific milieu. History of Wireless also goes into other key areas, including: The work of J. C. Bose and J. A. Fleming German, Japanese, and Soviet contributions to physics and applications of electromagnetic oscillations and waves Wireless telegraphic and telephonic development and attempts to achieve transatlantic wireless communications Wireless telegraphy in South Africa in the early twentieth century Antenna development in Japan: past and present Soviet quasi-optics at near-mm and sub-mm wavelengths The evolution of electromagnetic waveguides The history of phased array antennas Augmenting the typical, Marconi-centered approach, History of Wireless fills in the conventionally accepted story with attention to more specific, less-known discoveries and individuals, and challenges traditional assumptions about the origins and growth of wireless. This allows for a more comprehensive understanding of how various components and systems evolved. Written in a clear tone with a broad scientific audience in mind, this exciting and thorough treatment is sure to become a classic in the field.
This book provides a full representation of Inverse Synthetic Aperture Radar (ISAR) imagery, which is a popular and important radar signal processing tool. The book covers all possible aspects of ISAR imaging. The book offers a fair amount of signal processing techniques and radar basics before introducing the inverse problem of ISAR and the forward problem of Synthetic Aperture Radar (SAR). Important concepts of SAR such as resolution, pulse compression and image formation are given together with associated MATLAB codes. After providing the fundamentals for ISAR imaging, the book gives the detailed imaging procedures for ISAR imaging with associated MATLAB functions and codes. To enhance the image quality in ISAR imaging, several imaging tricks and fine-tuning procedures such as zero-padding and windowing are also presented. Finally, various real applications of ISAR imagery, like imaging the antenna-platform scattering, are given in a separate chapter. For all these algorithms, MATLAB codes and figures are included. The final chapter considers advanced concepts and trends in ISAR imaging.