Download Free Acta Numerica 1997 Volume 6 Book in PDF and EPUB Free Download. You can read online Acta Numerica 1997 Volume 6 and write the review.

A high-impact factor, prestigious annual publication containing invited surveys by subject leaders: essential reading for all practitioners and researchers.
An annual volume presenting substantive survey articles in numerical analysis and scientific computing.
Bridging a number of mathematical disciplines, and exposing many facets of systems of polynomial equations, Bernd Sturmfels's study covers a wide spectrum of mathematical techniques and algorithms, both symbolic and numerical.
The book integrates theoretical analysis, numerical simulation and modeling approaches for the treatment of singular phenomena. The projects covered focus on actual applied problems, and develop qualitatively new and mathematically challenging methods for various problems from the natural sciences. Ranging from stochastic and geometric analysis over nonlinear analysis and modelling to numerical analysis and scientific computation, the book is divided into the three sections: A) Scaling limits of diffusion processes and singular spaces, B) Multiple scales in mathematical models of materials science and biology and C) Numerics for multiscale models and singular phenomena. Each section addresses the key aspects of multiple scales and model hierarchies, singularities and degeneracies, and scaling laws and self-similarity.
An annual volume presenting substantive survey articles in numerical mathematics and scientific computing.
Hierarchical matrices are an efficient framework for large-scale fully populated matrices arising, e.g., from the finite element discretization of solution operators of elliptic boundary value problems. In addition to storing such matrices, approximations of the usual matrix operations can be computed with logarithmic-linear complexity, which can be exploited to setup approximate preconditioners in an efficient and convenient way. Besides the algorithmic aspects of hierarchical matrices, the main aim of this book is to present their theoretical background. The book contains the existing approximation theory for elliptic problems including partial differential operators with nonsmooth coefficients. Furthermore, it presents in full detail the adaptive cross approximation method for the efficient treatment of integral operators with non-local kernel functions. The theory is supported by many numerical experiments from real applications.
The year 2018 marked the 75th anniversary of the founding of Mathematics of Computation, one of the four primary research journals published by the American Mathematical Society and the oldest research journal devoted to computational mathematics. To celebrate this milestone, the symposium “Celebrating 75 Years of Mathematics of Computation” was held from November 1–3, 2018, at the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island. The sixteen papers in this volume, written by the symposium speakers and editors of the journal, include both survey articles and new contributions. On the discrete side, there are four papers covering topics in computational number theory and computational algebra. On the continuous side, there are twelve papers covering topics in machine learning, high dimensional approximations, nonlocal and fractional elliptic problems, gradient flows, hyperbolic conservation laws, Maxwell's equations, Stokes's equations, a posteriori error estimation, and iterative methods. Together they provide a snapshot of significant achievements in the past quarter century in computational mathematics and also in important current trends.
Written by the founders of the new and expanding field of numerical algebraic geometry, this is the first book that uses an algebraic-geometric approach to the numerical solution of polynomial systems and also the first one to treat numerical methods for finding positive dimensional solution sets. The text covers the full theory from methods developed for isolated solutions in the 1980's to the most recent research on positive dimensional sets.
This book is a snapshot of current research in multiscale modeling, computations and applications. It covers fundamental mathematical theory, numerical algorithms as well as practical computational advice for analysing single and multiphysics models containing a variety of scales in time and space. Complex fluids, porous media flow and oscillatory dynamical systems are treated in some extra depth, as well as tools like analytical and numerical homogenization, and fast multipole method.
A high-impact, prestigious, annual publication featuring invited surveys by subject leaders: essential reading for all practitioners and researchers.