Download Free Acoustics Of The Seabed As A Poroelastic Medium Book in PDF and EPUB Free Download. You can read online Acoustics Of The Seabed As A Poroelastic Medium and write the review.

This book presents a concise description of the acoustics of ocean sediment acoustics, including the latest developments that address the discrepancies between theoretical models and experimental measurements. This work should be of interest to ocean acoustic engineers and physicists, as well as graduate students and course instructors. The seabed is neither a liquid nor a solid, but a fluid saturated porous material that obeys the wave equations of a poroelastic medium, which are significantly more complicated than the equations of either a liquid or a solid. This volume presents a model of seabed acoustics with input parameters that allow the model to cover a wide range of sediment types. The author includes example reflection and transmission curves which may be used as typical for a range of sediment types. The contents of this book will allow the reader to understand the physical processes involved in the reflection, propagation, and attenuation of sound and shear waves in ocean sediments and to model the acoustic properties for a wide range of applications.
This book presents current research trends in the field of underwater acoustic wave direct and inverse problems. Until very recently, little has been published concerning model-based inversions of the boundaries and material constants of finite-sized targets located either in the water column or the sediments. This text is the first to investigate inverse problems in an ocean environment with a heavy emphasis placed on the description and resolution of the forward scattering problem.
This newest edition adds new material to all chapters, especially in mathematical propagation models and special applications and inverse techniques. It has updated environmental-acoustic data in companion tables and core summary tables with the latest underwater acoustic propagation, noise, reverberation, and sonar performance models. Additionally, the text discusses new applications including underwater acoustic networks and channel models, marine-hydrokinetic energy devices, and simulation of anthropogenic sound sources. It further includes instructive case studies to demonstrate applications in sonar simulation.
Respected scientist and educator George V. Frisk draws on his extensive professional experience to demonstrate how the ocean environment provides an excellent setting in which to display general principles of wave propagation that are also applicable to other areas of wave physics. Ocean and Seabed Acoustics proceeds with a derivation of elementary solutions to the wave equation in free space and then progressively addresses problems of increasing complexity. This book concludes with a discussion of acoustic wave propagation due to a point source in an inhomogeneous waveguide with lossy boundaries.
Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the worlds oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume the authors, all of whom have extensive at-sea experience in US and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.
This proceedings volume contains contributions from leading scientists working on modelling and numerical simulation of flows through porous media and on mathematical analysis of the equations associated to the modelling. There is a number of contributions on rigorous results for stochastic media and for applications to numerical simulations. Modelling and simulation of environment and pollution are also subject of several papers. The published material herein gives an insight to the state of the art in the field with special attention for rigorous discussions and results.
The book is devoted to rigorous derivation of macroscopic mathematical models as a homogenization of exact mathematical models at the microscopic level. The idea is quite natural: one first must describe the joint motion of the elastic skeleton and the fluid in pores at the microscopic level by means of classical continuum mechanics, and then use homogenization to find appropriate approximation models (homogenized equations). The Navier-Stokes equations still hold at this scale of the pore size in the order of 5 – 15 microns. Thus, as we have mentioned above, the macroscopic mathematical models obtained are still within the limits of physical applicability. These mathematical models describe different physical processes of liquid filtration and acoustics in poroelastic media, such as isothermal or non-isothermal filtration, hydraulic shock, isothermal or non-isothermal acoustics, diffusion-convection, filtration and acoustics in composite media or in porous fractured reservoirs. Our research is based upon the Nguetseng two-scale convergent method.
This newest edition adds new material to all chapters, especially in mathematical propagation models and special applications and inverse techniques. It has updated environmental-acoustic data in companion tables and core summary tables with the latest underwater acoustic propagation, noise, reverberation, and sonar performance models. Additionally