Download Free Acoustics Of Porous Media Book in PDF and EPUB Free Download. You can read online Acoustics Of Porous Media and write the review.

This book has grown out of the research activities of the author in the fields of sound propagation in porous media and modelling of acoustic materials. It is assumed that the reader has a background of advanced calculus, including an introduction to differential equations, complex variables and matrix algebra. A prior exposure to theory of elasticity would be advantageous. Chapters 1-3 deal with sound propagation of plane waves in solids and fluids, and the topics of acoustic impedance and reflection coefficient are given a large emphasis. The topic of flow resistivity is presented in Chapter 2. Chapter 4 deals with sound propagation in porous materials having cylindrical pores. The topics of effective density, and of tortuosity, are presented. The thermal exchanges between the frame and the fluid, and the behaviour of the bulk modulus of the fluid, are described in this simple context. Chapter 5 is concerned with sound propagation in other porous materials, and the recent notions of characteristic dimensions, which describe thermal exchanges and the viscous forces at high frequencies, are introduced. In Chapter 6, the case of porous media having an elastic frame is considered in the context of Biot theory, where new topics described in Chapter 5 have been included.
This book presents the proceedings of the 46th National Symposium on Acoustics (NSA 2017). The main goal of this symposium is to discuss key opportunities and challenges in acoustics, especially as applied to engineering problems. The book covers topics ranging from hydro-acoustics, environmental acoustics, bio-acoustics to musical acoustics, electro-acoustics and sound perception. The contents of this volume will prove useful to researchers and practicing engineers working on acoustics problems.
Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may also find this text useful. New to this edition: This new edition presents the fundamentals of wave propagation in Anisotropic, Anelastic, Porous Media while also incorporating the latest research from the past 7 years, including that of the author. The author presents all the equations and concepts necessary to understand the physics of wave propagation. These equations form the basis for modeling and inversion of seismic and electromagnetic data. Additionally, demonstrations are given, so the book can be used to teach post-graduate courses. Addition of new and revised content is approximately 30%. Examines the fundamentals of wave propagation in anisotropic, anelastic and porous media Presents all equations and concepts necessary to understand the physics of wave propagation, with examples Emphasizes geophysics, particularly, seismic exploration for hydrocarbon reservoirs, which is essential for exploration and production of oil
This book deals with acoustic wave interaction with different materials, such as porous materials, crystals, biological tissues, nanofibers, etc. Physical phenomena and mathematical models are described, numerical simulations and theoretical predictions are compared to experimental data, and the results are discussed by evoking new trends and perspectives. Several approaches and applications are developed, including non-linear elasticity, propagation, diffusion, soundscape, environmental acoustics, mechanotransduction, infrasound, acoustic beam, microwave sensors, and insulation. The book is composed of three sections: Control of Sound - Absorbing Materials for Damping of Sound, Sound Propagation in Complex/Porous materials and Nondestructive Testing (NDT), Non Linearity, Leakage.
The Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization combines in a single useful handbook the multidisciplinary domains of the petroleum industry, including the fundamental concepts of rock physics, acoustic logging, waveform processing, and geophysical application modeling through graphical examples derived from field data. It includes results from core studies, together with graphics that validate and support the modeling process, and explores all possible facets of acoustic applications in reservoir evaluation for hydrocarbon exploration, development, and drilling support. The Handbook of Borehole Acoustics and Rock Physics for Reservoir Characterization serves as a technical guide and research reference for oil and gas professionals, scientists, and students in the multidisciplinary field of reservoir characterization through the use of petrosonics. It overviews the fundamentals of borehole acoustics and rock physics, with a focus on reservoir evaluation applications, explores current advancements through updated research, and identifies areas of future growth. - Presents theory, application, and limitations of borehole acoustics and rock physics through field examples and case studies - Features "Petrosonic Workflows" for various acoustic applications and evaluations, which can be easily adapted for practical reservoir modeling and interpretation - Covers the potential advantages of acoustic-based techniques and summarizes key results for easy geophysical application
This application-orientated collection of formulas has been written by applied scientists and industrial engineers for design professionals and students who work in engineering acoustics. It is subdivided into the most important fields of applied acoustics, each dealing with a well-defined type of problem. It provides easy and rapid access to profound and comprehensive information. In order to keep the text as concise as possible, the derivation of a formula is described as briefly as possible and the reader is referred to the original source. Besides the formulas, useful principles and computational procedures are given.
This book integrates concepts from physical acoustics with those from linear viscoelasticity and fractional linear viscoelasticity. Compressional waves and shear waves in applications such as medical ultrasound, elastography, and sediment acoustics often follow power law attenuation and dispersion laws that cannot be described with classical viscous and relaxation models. This is accompanied by temporal power laws rather than the temporal exponential responses of classical models. The book starts by reformulating the classical models of acoustics in terms of standard models from linear elasticity. Then, non-classical loss models that follow power laws and which are expressed via convolution models and fractional derivatives are covered in depth. In addition, parallels are drawn to electromagnetic waves in complex dielectric media. The book also contains historical vignettes and important side notes about the validity of central questions. While addressed primarily to physicists and engineers working in the field of acoustics, this expert monograph will also be of interest to mathematicians, mathematical physicists, and geophysicists.
This book presents recent studies of acoustic wave propagation through different media including the atmosphere, Earth's subsurface, complex dusty plasmas, porous materials, and flexible structures. Mathematical models of the underlying physical phenomena are introduced and studied in detail. With its seven chapters, the book brings together important contributions from renowned international researchers to provide an excellent survey of recent computational and experimental studies of acoustic waves. The first section consists of four chapters that focus on computational studies, while the next section is composed of three chapters that center on experimental studies.